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1. Introduction

Teichmüller curves are algebraic curves C → Mg in the moduli space of curves that
are totally geodesic for the Teichmüller metric. They are generated by very special
flat surfaces, i.e. compact Riemann surfaces with a flat metric (up to finitely many
cone-type singularities), called Veech surfaces. Studying the geometry and dynam-
ics of Veech surfaces and connection to billiards was the original motivation to
introduce Teichmüller curves. Here we consider Teichmüller curves as intrinsically
interesting curves and relate their geometry to the geometry of Mg.

If we take a more distant look and consider just any curve C in Mg (or Mg)
there are various quantities that one can associate algebraically with such a curve.
Cohomologically, one can decompose the variation of Hodge structures of the family
over C into its irreducible summands. Intersection theory with various natural
divisors (and line bundles) on Mg gives a collection of numbers that one can attach
to C. The most prominent of them in algebraic geometry is the slope. Finally,
dynamics attaches to a Teichmüller curve some characteristic numbers, namely
Lyapunov exponents.

The purpose of these lecture notes is to relate the quantities ’decomposition of
the variation of Hodge structures’, ’slope’ and ’Lyapunov exponents’ on Teichmüller
curves. Of course, Teichmüller curves are not just arbitrary curves in Mg and their
origin from flat geometry allows special techniques, thus giving e.g. restrictions on
their slope. Towards the end of these lecture notes we broaden the picture and
highlight that all these quantities in fact make sense for any curve in Mg and most
do even for any curve in the moduli space of abelian varieties. They hence deserve
to be studied also in this broadened context!

We outline three guiding questions of the field: Can one classify Teichmüller
curves, in particular those that are primitive, i.e. that do not arise via covering
constructions? If one performs covering constructions of a surface generating a
Teichmüller curve, how do the above quantities ’slope’ and ’Lyapunov exponents’
change? What can one say about the values for slopes and Lyapunov exponents
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appearing for the Teichmüller curves with fixed type (e.g. of singularities)? More
detailed versions of these questions appear in the open problem sections.

The main results presented in this text are the following. First, the variation of
Hodge structures over a Teichmüller curve decomposes into r rank two pieces, where
r ≤ g is a field extension degree. One of this pieces has ’maximal degree’ and the
presence of a Hodge decomposition with such a maximal piece characterizes Teich-
müller curves (Theorem 5.5 and Theorem 5.6). This decomposition implies real
multiplication on an r-dimensional abelian subvariety of the family of Jacobians and
has proven to be a major tool towards classification of Teichmüller curves. Second,
to a Teichmüller curve and to a generic flat surface one can associate the Lyapunov
exponents (Theorem 6.1). The sum of Lyapunov exponents for Teichmüller curves
can be calculated as slopes by a Riemann-Roch argument (Proposition 6.4). Finally,
we show how the geometry of the moduli space allows to calculate the sum of
Lyapunov exponents for all Teichmüller curves in low genus (Theorem 6.8).

As guideline for the reader, we indicate that Section 2, Section 3, and Section 4
contain background material. The core of what has been indicated above starts with
the definition of Teichmüller curves in Section 5. To get started there we suggest
to have read Section 2 and Section 3.1 and to jump back to the other introductory
sections on demand.

Plan of the lecture series: The first lecture will introduce Teichmüller curves
and state the VHS decomposition. Proofs of this decomposition along with some
background on Hodge theory are part of the second lecture. The third lecture
introduces Lyapunov exponents showing how their sum can be related to quantities
that are well-known in algebraic geometry. The fourth lecture introduces the slope
of a (one-parameter) family of curves and how properties of the slope lead to non-
varying results for sums of Lyapunov exponents. Moreoever, it connects to some
open research problems, in particular characterizing other curves in moduli space,
such as Shimura curves, by Lyapunov exponents.

2. Flat surfaces and SL2(R)-action

2.1. Flat surfaces and translation structures

Let Mg be the moduli space of genus g compact, smooth and connected algebraic
curves. Sometimes we also need the moduli space Mg,n parametrizing curves with
n ordered marked points and we let Mg,[n] be the moduli space of curves with
n unordered marked points. Let ΩMg denote the vector bundle of holomorphic
one-forms over Mg minus the zero section. Points in ΩMg, called flat surfaces,
are usually written as a pair (X,ω) for a holomorphic one-form ω on the Riemann
surface X.

We use the terminology (algebraic) curve and (Riemann or flat) surface inter-
changeably. When talking of objects of complex dimension two we emphasize this
by speaking of ’complex surfaces’. Fibered surfaces introduced in Section 3.1 are
by definition of complex dimension two.

A translation structure on a Riemann surface X0 is an atlas of complex charts
{(Uα, gα)}α∈I , all whose transition functions are locally translations. The group
SL2(R) acts on the set of translation structures by postcomposing the chart maps gα
with the linear map (thereby identifying C with R2). Since SL2(R) normalizes the
subgroup of translations within the affine group of R2, this action is well-defined.
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For a flat surface (X,ω) we let Z(ω) be the set of zeros of ω. From the viewpoint
of translation structures it is natural to call Z(ω) the set of singularities of (X,ω).
Note that the algebraic curve X is non-singular at Z(ω).

The proof of the next proposition is straightforward, given that a translation
structure knows about the winding number of a loop around a singularity.

Proposition 2.1. If (X,ω) is a flat surface then X \Z(ω) has a translation struc-
ture. Conversely, suppose X0 is a Riemann surface obtained by removing from a
compact topological surface X a finite number of points. If X0 has a translation
structure, such that X is the completion of X0 with respect to the flat metric, then
there is a flat surface (X,ω), such that X0 = X \Z(ω) and such that the translation
structure associated with (X,ω) is just the given translation structure.

Corollary 2.2. There is an action of SL2(R) on the moduli space of flat surfaces
ΩMg. This action preserves the stratification by the number and type of zeros.

Proof. To define the SL2(R)-action we remove Z(ω), use the action of SL2(R)
on translation surfaces and use the converse statement in the previous proposition
to glue the missing points back in. It is immediate to check that for any given
A ∈ SL2(R) the hypothesis on the metric completion still holds. �

Various one-parameter subgroups of SL2(R) thus define flows on ΩMg. The
diagonal subgroup gt = diag(et, e−t) is in fact the Teichmüller geodesic flow and

the action of ht =

(
1 t
0 1

)
defines a flow that is called horocyclic flow.

Proposition 2.3. The SL2(R)-action preserves the subvariety of hyperelliptic flat
surfaces.

Proof. The hyperelliptic involution acts as (−1) on all one-forms, hence on ω.
In the flat coordinates of X given by ℜ(ω) and ℑ(ω), the hyperelliptic involution
acts by the matrix −Id. Since −Id is in the center of SL(2,R), we conclude that if
(X,ω) admits a hyperelliptic involution, so does A·(X,ω) for any A ∈ SL(2,R). �

Some flat geometry. The holomorphic one-form ω on X defines a flat metric and
consequently for any given direction θ we can define the straight line flow φθt (x)
in the direction θ starting at x ∈ X, where t denotes the flow distance in the
metric |ω|. Consider the geodesics on a flat surface (X,ω) in a fixed direction θ. If
such a geodesic γ ends forward and backward in finite time in a singularity (i.e. in
Z(ω)), then γ is called a saddle connection. If in a given direction θ all geodesics
are either periodic or saddle connections, then θ is called a periodic direction. A
maximal union of homotopic closed geodesics on (X,ω) is called a cylinder. The
width is the length of a core geodesic, the height is the length of a straight segment
perpendicular to a core geodesic crossing the cylinders once. We define the modulus
of a cylinder to be the ratio height over width. If the moduli of all cylinders in a
periodic direction are commensurable, the direction is called parabolic. (The reason
for this terminology will become apparent once we define affine groups.)

Every flat surface has a saddle connection, more precisely, the set of directions
of saddle connection vectors is dense in S1. Here and in the sequel we consider
the torus with one artificial singularity. Moreover, the set of saddle connection
vectors (with multiplicities) is discrete in R2. In particular, there exist finitely
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many shortest saddle connections on every flat surface. Proofs of these elementary,
but fundamental properties can be found in [Vor96] and in [MT02].

Half-translation structures and quadratic differentials. A half-translation
structure on a surface is an atlas whose transition functions are compositions of
±Id and translations. Similarly to translation structures, one can set up a corre-
spondence between half-translation structures and quadratic differentials. Except
for hyperelliptic loci (defined below) we will disregard here the question whether
the results on translation surfaces extend to half-translation surfaces or not. Occa-
sionally this is easy, but often there are problems. We sometimes give references to
the corresponding results for quadratic differentials.

2.2. Affine groups and the trace field

One of the basic invariants of a flat surface is the affine group SL(X,ω) (also
called Veech group) defined as follows. Let Aff+(X,ω) be the group of orientation-
preserving homeomorphisms of X, that are affine diffeomorphisms on X \Z(ω) with
respect to the charts defined by integrating ω. (We will abusively call elements of
Aff+(X,ω) affine diffeomorphisms, although they are not differentiable at the zeros
of ω.) The matrix part of the affine map is independent of the charts and provides
a map

D : Aff+(X,ω) → SL2(R).

The image of D is called the affine group SL(X,ω).

Proposition 2.4. The image of D is a discrete group that is never cocompact.

Proof. Discreteness follows from the discreteness of the set of saddle connec-
tion vectors. If SL(X,ω) was cocompact, suppose the horizontal direction has a
saddle connection. Then there exists an unbounded sequence of times tn and el-
ements ϕn ∈ SL(X,ω) such that ϕn(gtn(X,ω)) converges in H/SL(X,ω). On the
limiting surface we obtain a contradiction to the above lower bound for norms of
saddle connection vectors. �

Let K = Q(tr(ϕ), ϕ ∈ SL(X,ω)) denote the trace field of the affine group. The
field extension K/Q has a priori no reason to be Galois and we let L/Q be the
Galois closure of K/Q.

An important restriction on the trace field is the following bound.

Proposition 2.5. The degree of the trace field of the affine group SL(X,ω) is
bounded by the genus g(X).

Proof. Write K = Q(t) for some t =
∑
aitr(Dϕi) with ai ∈ Q and ϕi ∈

SL(X,ω) using the theorem of the primitive element and the fact that tr(A)tr(B) =
tr(AB) + tr(AB−1) for A, B ∈ SL2(R). Now consider

T =
∑

ai(ϕ
∗
i + (ϕ−1

i )∗) ∈ End(H1(X,Q)).

On the two-dimensional subspace L = 〈ℜ(ω),ℑ(ω)〉 we have T |L = t · Id. Hence t
is an eigenvalue of T of multiplicity at least two. The square of the characteristic
polynomial of t thus divides the polynomial det(xI2g − T ), which is of degree 2g,
since dimH1(X,Q) = 2g. �
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The Veech group of a general flat surface in a given stratum is of order two or
trivial, depending on whether the stratum is hyperelliptic or not ([Möl09]). We
will eventually be most interested in surfaces where the opposite extreme holds, i.e.
where the affine group is as large as possible.

We briefly recall Thurston’s classification of surface homeomorphisms. A home-
omorphism ϕ of X is called elliptic, if it is isotopic to a diffeomorphism of finite
order. It is easy to see that an affine diffeomorphism ϕ of (X,ω) is elliptic, if it is of
finite order. In particular D(ϕ) is of finite order. Conversely, if D(ϕ) is of finite or-
der, then ϕ is of finite order, since Ker(D) consists of holomorphic diffeomorphisms
of X and consequently Ker(D) is finite by Hurwitz’ theorem.

A diffeomorphism ϕ is called reducible, if it is isotopic to a diffeomorphism
fixing a (real) simple closed curve on X. If ϕ is neither reducible nor elliptic, then
ϕ is called pseudo-Anosov. By [HM79] there exists a pair (X, q) such that ϕ is an
affine diffeomorphism of (X, q). As stated above, we will restrict to the case that
q = ω2. Moreover, (X,ω) can be chosen such that ϕ stretches the horizontal lines
by some factor λ > 1, called dilatation coefficient, and contracts the vertical lines by
the same factor λ. Thus, |trD(ϕ)| > 2 for an affine pseudo-Anosov diffeomorphism.
The corresponding matrix D(φ) is called hyperbolic.

Consequently, an affine diffeomorphism ϕ with |trD(ϕ)| = 2, i.e. such thatD(ϕ)
is parabolic, is a reducible affine diffeomorphism. We briefly recall the structure of
such a parabolic diffeomorphism. Say the horizontal direction is the eigendirection
of D(ϕ). Then some power of ϕ fixes all the finitely many horizontal saddle connec-
tions. The complement of these saddle connections has to consist of metric cylinders
and ϕ acts as (power of a) Dehn twist along the core curves of the cylinders. Since
ϕ has to be affine globally, the moduli have to be commensurable.

Conversely, composing Dehn twists in cylinders, we obtain the following propo-
sition. We define the lcm(q1, . . . , qn) for rational numbers qi to be the smallest
positive rational number that is an integral multiple of all the qi.

Proposition 2.6. If the horizontal direction of (X,ω) decomposes into cylinders
of moduli mi that are commensurable and m = lcm(m−1

1 , . . . ,m−1
n ), then there is

an affine diffeomorphism ϕ with D(ϕ) =

(
1 m
0 1

)
.

This idea is elaborated in the following construction.

Thurston-Veech construction. The following construction first appears in the
famous 1976 preprint of Thurston ([Thu88]). See also [Vee89], [HL06a] and
[McM06a] for recent versions and presentations.

A multicurve A on a surface Σg of genus g is a union of disjoint essential simple
closed curves, no two of which bound an annulus. A pair (A,B) of multicurves
fills (or binds) the surface if for each curve in A and each curve in B the geometric
intersection number is minimal in their homotopy classes and if the complement
Σg \ (A ∪ B) is a simply connected polygonal region with at least 4 sides. Such a
set of curves is shown in Figure 1.

We index the components of A and B such that A = ∪a
i=1γi and B = ∪a+b

i=a+1γi
and let C be the (unsigned) intersection matrix of A and B, i.e. for i 6= j we have
Cij = |γi ∩ γj | and Cjj = 0 for all j.

As additional input datum for the construction we fix a set of multiplicities
di ∈ N for i = 1, . . . , a+ b. Since (A,B) fills Σg, the intersection graph is connected
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Figure 1. Binding curves and the surface resulting from the
Thurston-Veech construction

and the matrix (diCij) is a Perron-Frobenius matrix. Hence there is a unique
positive eigenvector (hi) up to scalar such that

µhi =

j=a+b∑

j=1

diCijhj

for some positive eigenvalue µ.
We now glue a surface X from rectangles Rp = [0, hi] × [0, hj ] ⊂ C for each

intersection point p ∈ γi ∩ γj . Namely, glue Rp to Rq along the vertical (resp.
horizontal) sides whenever p and q are joined by an edge in A (resp. B) of the
graph A ∪ B. The differentials dz2 on each rectangle glue to a global quadratic
differential q on X. The resulting surface is also shown in Figure 1, where sides
with the same label have to be identified by parallel translations.

Let τi be the Dehn twist around γi and define

τA =
∏a

i=1 τ
di

i

τB =
∏a+b

i=a+1 τ
di

i .

Theorem 2.7 ([Thu88],[Vee89]). The flat surface (X, q) constructed above con-
tains affine diffeomorphisms τA and τB with derivatives

DτA =

(
1 µ
0 1

)
and DτB =

(
1 0
−µ 1

)
.

In particular the elements τnAτB are pseudo-Anosov diffeomorphisms for n > 1.

Proof. By construction the modulus mi of the cylinder with core curve γi is
di/µ. Hence the powers of the Dehn twists occurring in the definition of τA and τB
have linear part as claimed. They fix the boundary of the horizontal resp. vertical
cylinders and together define affine diffeomorphisms.

In order to check the last claim, one has to recall that an affine diffeomorphism
is pseudo-Anosov if and only if the absolute value of its trace is greater than two. �

Since we are dealing exclusively with flat surfaces in the sequel, we remark that
the quadratic differential has a square root, i.e. q = ω2 if and only if for a suitable
orientation of the γi their geometric and algebraic intersection numbers coincide.
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Totally real fields. A field is called totally real if all its complex embeddings factor
through R. Totally real trace fields play an important role for the classification of
Teichmüller curves. The following result was first established for Teichmüller curves
in [Möl06b]. Later Hubert and Lanneau gave the following short proof, showing
that trace fields are totally real in a much more general context.

Theorem 2.8 ([HL06a]). Let (X,ω) be a flat surface. If SL(X,ω) contains a
parabolic and a hyperbolic element, then the trace field of SL(X,ω) is totally real.

Proof. In the first step we show that such a surface (X,ω) arises via the
Thurston-Veech construction. Take the curves in A to be the core curves of the
cylinders of the parabolic element P . Let H be the hyperbolic element. Then
HPH−1 is again parabolic and its fixed direction is different from the fixed direc-
tion of P . Take B to be the core curves of the cylinders of HPH−1. (We may
conjugate SL(X,ω) within SL2(R) so that these fixed directions become horizontal
and vertical.) Then (A,B) fills the surface. Take the di for i = 1, . . . , |A| resp. for
i = |A|+1, . . . , |A∪B| to be the least common multiples of the ratios of the moduli
of the cylinders in the horizontal resp. vertical direction. Then (X,ω) is just the
surface obtained by the Thurston-Veech construction using the data (A,B, di).

In the second step we show that any surface that arise via the Thurston-Veech
construction has totally real trace field. We continue to use the notation of that
section of Theorem 2.7. Let D be the diagonal matrix with entries di. The square
of the largest eigenvalue of the matrix C is the largest eigenvalue of the matrix C2.
Hence we have to show that all the eigenvalues of (DC)2 are real.

Suppose first for simplicity di = 1 for all i. Since for some matrix C0 we have

DC = C =

(
0 C0

CT
0 0

)
, hence (DC)2 = C2 =

(
C0C

T
0 0

0 CT
0 C0

)
.

Since C2 is symmetric, all its eigenvalues are real. Thus Q(µ2) is totally real.
If the di are no longer identically one, (DC)2 is still similar to a symmetric

matrix: Split D into two pieces D′ and D′′ of size a resp. b and let D′√ resp. D′′√

denote the diagonal matrix with entries
√
di. Then

(DC)2 =

(
D′C0D

′′CT
0 0

0 D′′CT
0 D

′C0

)
.

The upper block decomposes as

D′C0D
′′CT

0 = D′√(D′√C0D
′′√)(D′√C0D

′′√)T (D′√)−1

and for the lower block the same trick works. The above conclusion about the
eigenvalues thus still holds. �

Example: The affine group of a regular n-gon is a triangle group generated
by a rotation around the center of the n-gon and a parabolic element ([Vee89]).
There are examples of surfaces whose Veech group contains pseudo-Anosovs but
no parabolic elements, in particular this pseudo-Anosov does not arise from the
Thurston-Veech construction ([HL06a]). A survey of examples of affine groups
that can appear is [Möl09].
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2.3. Strata of ΩMg and hyperelliptic loci

The space ΩMg parameterizing flat surfaces is stratified according to the zeros of

one-forms. For mi ≥ 1 and
∑k

i=1mi = 2g − 2, let ΩMg(m1, . . . ,mk) denote the
stratum parameterizing one-forms that have k distinct zeros of order m1, . . . ,mk.

For di ≥ −1 and
∑s

i=1 di = 4g − 4, let Q(d1, . . . , ds) denote the moduli space
of quadratic differentials that have s distinct zeros or poles of order d1, . . . , ds.
For di ≥ 0 this is a subset of the vector bundle of holomorphic quadratic dif-
ferentials over Mg. The condition di ≥ −1 ensures that the quadratic differen-
tials in Q(d1, . . . , ds) have at most simple poles and thus finite volume. Namely,
Q(d1, . . . , ds) parametrizes pairs (X, q) of a Riemann surface X and a meromorphic
section q of ω⊗2

X with the prescribed type of zeros and poles.
If the quadratic differential is not a global square of a one-form, there is a

natural double covering π : Y → X such that π∗q = ω2. This covering is ramified
precisely at the zeros of odd order of q and at its poles. It gives a map

φ : Q(d1, . . . , ds) → ΩMg(m1, . . . ,mk),

where the signature (m1, . . . ,mk) is determined by the ramification type (see [KZ03]
for more details).

If the domain and the range of the map φ have the same dimension for some
signature, we call the image a component of hyperelliptic flat surfaces of the corre-
sponding stratum. This can only happen, if the domain of φ parametrizes genus
zero curves, thus justifying the terminology. More generally, if the domain of φ
parametrizes genus zero curves, we call the image a locus of hyperelliptic flat sur-
faces in the corresponding stratum. These loci are often called hyperelliptic loci,
e.g. in [KZ03] and [EKZ11]. We prefer to reserve the expression hyperelliptic locus
for the subset of Mg (or its closure in Mg) parameterizing hyperelliptic curves and
thus specify with ’flat surfaces’ if we speak of subsets of ΩMg.

2.4. Spin structures and connected components of strata

A spin structure (or theta characteristic) on a smooth curve X is a line bundle L
whose square is the canonical bundle, i.e. L⊗2 ∼ KX . The parity of a spin structure
is given by dimH0(X,L) mod 2. This parity is well-known to be a deformation
invariant. The moduli space of spin curves Sg parametrizes pairs (X, η), where η
is a theta characteristic of X. It has two components S−

g and S+
g distinguished by

the parity of the spin structure. The spin structures on stable curves are defined
such that the morphisms π : S−

g → Mg and π : S+
g → Mg are finite of degree

2g−1(2g − 1) and 2g−1(2g + 1), respectively. (The compactification is need for
intersection theory only, i.e. for some cases of Theorem 6.8 that are not treated
in details in these notes. The reader is referred to [Cor89] for spin structures on
stable curves.) If (X,ω) ∈ ΩMg(2ℓ1, . . . , 2ℓk) with zeros of ω being P1, . . . , Pk,

then the line bundle L = OX(
∑k

i=1 ℓiPi) naturally defines a spin structure.
We can now recall the classification of connected components of strata in ΩMg.

Theorem 2.9 ([KZ03]). The strata of ΩMg have up to three connected compo-
nents, distinguished by the parity of the spin structure and by being hyperelliptic
or not. For g ≥ 4, the strata ΩMg(2g − 2) and ΩMg(2ℓ, 2ℓ) with an integer
ℓ = (g − 1)/2 have three components, the component of hyperelliptic flat surfaces
and two components with odd or even parity of the spin structure but not consisting
exclusively of hyperelliptic curves.
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The stratum ΩM3(4) has two components, ΩM3(4)
hyp and ΩM3(4)

odd. The
stratum ΩM3(2, 2) also has two components, ΩM3(2, 2)

hyp and ΩM3(2, 2)
odd.

Each stratum ΩMg(2ℓ1, . . . , 2ℓr) for r ≥ 3 or r = 2 and ℓ1 6= (g−1)/2 has two
components determined by even and odd spin structures.

Each stratum ΩMg(2ℓ − 1, 2ℓ − 1) for ℓ ≥ 2 has two components, the compo-
nent of hyperelliptic flat surfaces ΩMg(2ℓ− 1, 2ℓ− 1)hyp and the other component
ΩMg(2ℓ− 1, 2ℓ− 1)non−hyp.

In all the other cases, the stratum is connected.

Consider the partition (2, . . . , 2). For (X,ω) ∈ ΩMg(2, . . . , 2)
odd with div(ω) =

2
∑g−1

i=1 pi, the line bundle η = OX(
∑g−1

i=1 pi) is an odd theta characteristic. There-
fore, we have a natural morphism

f : ΩMg(2, . . . , 2)
odd/C∗ → S−

g .

Note that f contracts the locus where h0(η) > 1. Note also that for g = 3 Clifford’s
theorem implies that h0(η) = 1, i.e. f is an isomorphism in this case.

2.5. Stable differentials and Deligne-Mumford compactification

The space ΩMg is not compact for two reasons. First, it is a vector bundle (minus
the zero section), so we should rather use the bundle of projective spaces PΩMg =
ΩMg/C

∗. (This projective space bundle is also useful when dealing with Teich-
müller curves, since they will be naturally (complex) curves in PΩMg, whereas in
ΩMg they are objects of real dimension four.)

Second, the moduli space of curves itself is not compact. Denote by Mg the

Deligne-Mumford compactification of Mg. Points in the boundary of Mg are stable
curves, i.e. projective connected algebraic curves with at most nodes as singularities
and such that each irreducible component isomorphic to a projective line has at
least three nodes.

The bundle of holomorphic one-forms extends over Mg, parameterizing stable
one-forms or equivalently sections of the dualizing sheaf. We denote the total space
of this extension by ΩMg. The stable one-forms are holomorphic except for simple
poles at the nodes with the conditions that residues at the two branches of the
node add up to zero. An example of a stable one-form is the form dz/z on the
projective line P1 with puncture at zero, at ∞ and maybe some other points. If
we view the projective line P1 as an infinitely high cylinder with waist curve of
length one (i.e. obtained by identifying ℜ(z) = 0 with ℜ(z) = 1 in the complex
plane) and with the points at i∞ and −i∞ glued together, this one-form becomes
dz. This metric picture of one infinite cylinder (or two half-cylinders if we moreover
cut along the real axis) should be kept in mind when understanding the boundary
points of Teichmüller curves.

For a stable curve X, denote the dualizing sheaf by ωX . We will stick to the
notation that points in ΩMg are given by a pair (X,ω) with ω ∈ H0(X,ωX),
although this notation may result in confusion since dropping the subscript X
drastically changes the meaning.

3. Curves and divisors in Mg

The aim of this section is a short introduction to the Picard group of Mg. This

will be used to attach to any curve or divisor in Mg the quantity slope.
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3.1. Curves and fibered surfaces

The aim of this section is to show how to associate with a map C → Mg from
a smooth algebraic curve C to the moduli space a fibered surface and to discuss
various models of that fibered surface.

Let f : X → C be a smooth family of curves of genus g over the smooth curve C,
i.e. a smooth morphism with connected fibers, which are smooth curves of genus g.
By definition of the moduli space, such a family yields a moduli map m : C → Mg,
but the converse does not quite hold. So we will pass to finite unramified covers.

More precisely, let M[n]
g be a finite cover, that is isomorphic to the quotient of

Teichmüller space by some subgroup Γ
[n]
g of finite index in the mapping class group

without torsion elements. Technically the notation M[n]
g refers to level-n-structure

and the claim on torsion elements holds for any n ≥ 3, but we will not need the
precise definition.

The moduli space M[n]
g carries a universal family funiv : Xuniv → M[n]

g that we

can pullback via any map B → M[n]
g to obtain a family of curves f : X → B.

If we start with C → Mg, we can take B to be the preimage of C in M[n]
g , or

rather if the map is not an embedding we obtain B as the fiber product C×Mg
M[n]

g .
In general this is not an unramified cover of C, but if we provide C with an orbifold
structure such that C → Mg factors through the moduli stack, then B → C is
unramified. This will happen in all the cases we need in the sequel.

Given a (not necessarily compact) curve C (or B) as above, we denote by C
(resp. B) its closure, i.e. the corresponding smooth projective curve. Since Mg is

projective, there is a map m : C → Mg extending the map m : C → Mg. We

denote by ∆ ⊂ C (or ∆C and ∆B if we need to distinguish) the preimage of the
boundary of Mg.

The stable reduction theorem states that after a further covering of B, unram-
ified outside ∆ the pullback of the map f : X → B can be completed to a family
of stable curves. Since B is already such kind of covering of C, we stick to the
notation of B for the base curve and denote by f : X → B this family of stable
curves. Moreover we can suppose that the monodromy around the cusps of B (see
Section 4) is unipotent after a further finite base change unramified outside ∆.
Again, we assume this in the sequel but stick to the letter B for the base curve.

The total space X is, in general, not a smooth complex surface. Indeed it has
singularities at some of the singular points of the singular fibers of f . If the node
in the fiber is given by the equation x · y = 0 and t is a local parameter on the base
B, then the local equation of X is x · y = tn for some n, and this is smooth if and
only if n = 1. In general this is a singularity of type An−1 ([BHPVdV04]).

One can resolve these singularities and obtain a smooth surface X̃ together with

a birational map X̃ → X . The price we pay for that is that the induced fibration

f̃ : X̃ → B has no longer stable but only semistable fibers. The fiber of the map

X̃ → X over a singular point of type An−1 is a chain of n− 1 rational curves. See
[HM98] Proposition 3.47 and Proposition 3.48 for an algorithm how to compute
the stable and semi-stable models and the references in loc. cit. for a general proof.

With a view towards Teichmüller curves, the advantage of the stable model
X is its direct relation to the geometry of flat surfaces (see Section 5.4), whereas

calculations of intersection numbers work without correction terms on X̃ only.
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3.2. Picard groups of moduli spaces

We write Pic(·) for the rational Picard group Picfun(·)Q of a moduli stack (see
[HM98] for more details). Since the quantities we are interested in, the sum of
Lyapunov exponents and slopes, are invariant under coverings unramified in the
interior of Mg, this is the group we want to calculate intersections with, not the
Picard group of the coarse moduli space.

We fix some standard notation for elements in the Picard group. Let λ denote
the first Chern class of the Hodge bundle. Let δi, i = 1, . . . , ⌊g/2⌋ be the boundary
divisor of Mg whose generic element is a smooth curve of genus i joined at a node
to a smooth curve of genus g − i. The generic element of the boundary divisor δ0
is an irreducible nodal curve of geometric genus g − 1. In the literature sometimes
δ0 is denoted by δirr. We write δ for the total boundary class.

For moduli spaces with marked points we denote by ωrel the relative dualizing
sheaf of Mg,1 → Mg and ωi,rel its pullback to Mg,n via the map forgetting all but
the i-th marked point. For a set S ⊂ {1, . . . , n} we let δi;S denote the boundary
divisor whose generic element is a smooth curve of genus i joined at a node to a
smooth curve of genus g − i and the sections in S lying on the first component.

Theorem 3.1 ([AC87]). The rational Picard group of Mg is generated by λ and
the boundary classes δi, i = 0, . . . , ⌊g/2⌋.

More generally, the rational Picard group of Mg,n is generated by λ, ωi,rel,
i = 1, . . . , n, by δ0 and by δi;S, i = 0, . . . , ⌊g/2⌋, where |S| > 1 if i = 0 and 1 ∈ S if
i = g/2.

Alternatively, we define ψi ∈ Pic(Mg,n) to be the class with value −π∗(σ2
i ) on

the universal family π : X → C with section σi corresponding to the i-th marked
point. We have the relation

ωi,rel = ψi −
∑

i∈S

δ0;S .

Consequently, a generating set of Pic(Mg,n) can also be formed by the ψi, λ and
boundary classes.

For a divisor class D = aλ−∑⌊g/2⌋
i=0 biδi in Pic(Mg), define its slope to be

(1) s(D) =
a

b0
.

3.3. Special divisors on moduli spaces

In the application for Teichmüller curves we do not care about the coefficients of δi
for i ≥ 1 in the divisor classes in Pic(Mg), since Teichmüller curves do not intersect
these components (see Corollary 5.11). As shorthand, we use δother to denote some
linear combination of δi for i ≥ 1. Similarly, in Mg,n we use δother to denote some
linear combination of all boundary divisors but δ0. For the same reason we do
not distinguish between ωi,rel and ψi for a divisor class, since they only differ by
boundary classes in δother.
The hyperelliptic locus in M3. Denote by H ⊂ Mg the closure of locus of genus

g hyperelliptic curves. We call H the hyperelliptic locus in Mg. Note that H is a
divisor if and only if g = 3. A stable curve X lies in the boundary of H if there is an
admissible cover of degree two X̃ → P1, for some nodal curve X̃ whose stabilization
is X. We refer to [HM98] for the definition of admissible covers.
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The class of the hyperelliptic locus H ⊂ M3 calculated e.g. in [HM98, (3.165)]
is given as follows:

(2) H = 9λ− δ0 − 3δ1,

hence it has slope s(H) = 9.
The Brill-Noether divisors. A good reference for the material quickly recalled here
is [ACGH85]. For a divisor D of degree d on a curve X, denote by

|D| = {div(s) +D | s ∈ H0(X,L(D)) \ {0}}
the set of all effective divisors linearly equivalent to D. |D| naturally has the
structure of a projective space. A grd on X is a projective linear subspace of |D| of
dimension r. A g1d is called a pencil.

The Brill-Noether locus BNr
d in Mg parametrizes curves X that possesses a

grd. If the Brill-Noether number

ρ(g, r, d) = g − (r + 1)(g − d+ r) = −1,

then BNr
d is indeed a divisor.

There are pointed versions of this divisor. Let w = (w1, . . . , wn) be a tuple of
integers. Let BNr

d,w be the locus in Mg,n of pointed curves (X, p1, . . . , pn) with a

line bundle L of degree d such that L admits a grd and h0(L(−∑wipi)) ≥ r. This
Brill-Noether locus is a divisor, if the generalized Brill-Noether number

ρ(g, r, d, w) = g − (r + 1)(g − d+ r)− r(|w| − 1) = −1.

The hyperelliptic divisor and e.g. the Weierstrass divisor in Mg,1 can also be in-
terpreted as Brill-Noether divisors.

The class of these pointed divisors has been calculated in many special cases,
in particular in [Log03] and later in [Far09b]. We give two examples. The class
of the classical Brill-Noether divisor was calculated in [HM82], in particular

(3) BN1
3 = 8λ− δ0 − δother for g = 5.

If all wi = 1 and n = r + 1 the Brill-Noether divisor specializes to the divisor
Lin calculated in [Far09b, Sec. 4.2]. In particular [Far09b, Thm. 4.6] gives

(4) Lin13 = BN1
3,(1,1) = −ω1,rel − ω2,rel + 8λ− δ0 − δother for g = 4.

We will illustrate the method of test curves for calculating the class of a divisor
(see e.g. [HM98] for more examples). For instance, using certain test curves
including a Teichmüller curve we can determine (partially, but sufficiently for our
purposes) the class of Lin13. We have to use some terminology that is introduced
below. The reader is invited to skip over it at a first reading and later check that
we do not use circular reasoning.

Proposition 3.2. The class of Lin13 equals

Lin13 = k(−ω1,rel − ω2,rel + 8λ− δ0 − δother)

for some constant k.

Before proceeding to the proof, we recall some facts from algebraic geometry.
If X is a non-hyperelliptic curve of genus 4, then its canonical image in P3 is
contained in a unique irreducible quadric. Up to isomorphism there are two types
of quadrics in P3: smooth quadrics, e.g. xw = yz and singular quadrics, e.g.
xy = z2. In particular, in the smooth case, the quadric Q is isomorphic to P1 ×P1,
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and its Picard group is therefore isomorphic to Z⊕ Z. It is generated by the class
(1, 0) = {pt}×P1 and the class (0, 1) = P1×{pt}. The intersection product of two
divisors D1 = (a, b) and D2 = (a′, b′) is therefore

D1 ·D2 = ab′ + a′b.

Note also that the canonical divisor KQ has class (−2,−2).

Proof. Suppose that

Lin13 = a1ω1,rel + a2ω2,rel + bλ− cδ0 − δother

for some unknown coefficients a1, a2, b, c. By symmetry we have a1 = a2.
To construct the first test curve, we start with a general pencilB in the complete

linear system |(3, 3)| on a smooth quadric Q ⊂ P3. Note that |(3, 3)| is a projective
space of dimension 15. Via the isomorphism Q ∼= P1 × P1, its elements can be
viewed as polynomials f(x0, x1, y0, y1) which are bihomogenuous of degree 3 in the
x and y-coordiantes. Therefore a basis of the underlying vector space is given by
xi0x

3−i
1 yj0y

3−j
1 for i, j = 0, . . . , 3. The elements of B are curves Xt on Q cut out by

an equation of the form ft =
∑

i,j(aij + tbij)x
i
0x

3−i
1 yj0y

3−j
1 = 0 where t ∈ P1.

First note that without loss of generality, the generic member of B is non-
singular and irreducible. In fact, the singular curves in |(3, 3)| form a subset of
projective dimension 14. Likewise, irreducibility is an open condition, and there
is at least one irreducible curve in |(3, 3)|. For a smooth projective curve X on a
surface, we can compute its genus using the adjunction formula

2g(X)− 2 = X · (X +KQ) = (3, 3) · ((3, 3) + (−2,−2)) = 6,

hence g(X) = 4.
Recall that a base point of the linear system B is a point x ∈ Q that is contained

in all divisors in B. We wish to determine the number of base points. Take two
curves X0 and Xt in B. They intersect in (3, 3) · (3, 3) = 18 points, counted with
multiplicity. Take any of the intersection points xt on X0. Now let t vary and
trace the image of xt ∈ X0 ∩Xt. If xt moved then we would obtain a non-constant
map P1 → X0. But if we choose a smooth irreducible member of B as X0 then
g(X0) = 4, which yields a contradiction.

There are 18 base points in the pencil. Choose two of them as the marked
points p, q. Since B is general, p, q are not contained in any ruling of Q, namely
there is no section of a linear series g13 that contains both p and q. It implies that
B and Lin13 are disjoint in M4,2, i.e.

B · Lin13 = 0.

Blowing up the 18 base points, we obtain a surface S ⊂ P1 × Q, which is a one-
parameter family of genus 4 curves over B ∼= P1. Let χtop(·) denote the topological
Euler characteristic. We have

χtop(S) = χtop(P
1) · χtop(X) +B · δ0,

where X has genus equal to 4. We know that

χtop(P
1) = 2, χtop(X) = −6,

χtop(S) = χtop(Q) + 18 = χtop(P
1) · χtop(P

1) + 18 = 22.

All together it implies there are 34 irreducible nodal curves in the family B, namely,

B · δ0 = 34.
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Let ωS/B denote the relative dualizing sheaf of S over B. Since S has class (1; 3, 3)

in the Picard group of P1 ×Q, one checks that

ωS/B = ωS − f∗ωB

= (ωP1×Q + S)|S − f∗ωB

= (−2;−2,−2) + (1; 3, 3)− (−2; 0, 0)

= (1; 1, 1)

on S, where f : S → B is the projection. Then f∗(c21(ωS/B)) on B is equal to the
top intersection

(1; 1, 1) · (1; 1, 1) · (1; 3, 3) = 14

on P1 ×Q. Using the Noether formula 12λ = f∗(c21(ωS/B)) + δ, we get

B · λ =
1

12
(34 + 14) = 4.

Moreover, let Γp and Γq be the exceptional curves corresponding to the blow-up
of the two marked points. For i = 1, 2 we have B · ωi,rel = −1, since this is the
self-intersection of Γp (resp. Γq). Note that B does not intersect any boundary
divisors except for δ0. Putting the above intersection numbers together, we obtain
a relation

−a1 + 2b+ 17c = 0.

As the second test curve, we take a Teichmüller curve C generated by a flat
surface in the stratum ΩM4(3, 3)

non−hyp, e.g. the square-tiled surface given by
the permutations (πr = (123456789 10), πu = (19568)). Using the algorithm in
[EKZ11] along with equation (12) we find for this particular curve that the sum
of Lyapunov exponents equals L(C) = 2, i.e. the slope s(C) = 33/4. Using Propo-
sition 5.12 with κ = 5/8, we obtain another relation

−a1 + 4b+ 33c = 0.

The two relations imply that

b = −8c, a1 = c

and this concludes the proof. �

3.4. Slopes of divisors and of curves in Mg

We summarize in this section some results on slopes of divisors and of curves. With
the exception of one consequence of the Noether formula that we prove below, they
are not strictly needed in the sequel. They are meant to compare the interest in
calculating (the sum of) Lyapunov exponents below with a topic that is classic in
algebraic geometry.

For g ≥ 4 the canonical bundle of Mg has class

KMg
= 13λ− 2δ0 − 3δ1 − 2δ2 − · · · − 2δ⌊g/2⌋.

If there is an effective divisor D in Mg with slope s(D) < 13/2 = s(KMg
), then one

can show that Mg is of general type. This observation on the birational geometry

of Mg initiated the quest for divisors of low slope and led Harris-Morrison to
conjecture

s(D) ≥ 6 +
12

g + 1
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for all effective divisors in Mg. They could show that this bound holds in small
genera, but the conjecture is known to be false ([FP05]). Still there is no effective
divisor with s(D) ≤ 6 known and the best known lower bounds for the slope are in
the order of 1/g for large g.

We now turn our attention to curves and fibered surfaces. Let s(C) be the
slope of a curve C → Mg defined by

s(C) =
C · δ
C · λ

,

where δ =
∑⌊g/2⌋

i=0 δi is the total boundary. (This is not exactly dual to the standard
definition of the slopes of divisors in (1), but because of Corollary 5.11 the difference
does not matter for the applications we have in mind.)

There are numerous results on the slope of a curve in the moduli space of
curves. We will later be interested in slopes of Teichmüller curves in connection
with dynamical properties. Just to put this into the right perspective we cite some
results on slopes of curves from a geometric perspective.

Proposition 3.3. Let f : X → C be a family of curves with smooth fibers over a
smooth curve C. The corresponding curve C → Mg satisfies the slope inequality

s(C) ≤ 12.

Proof. On the smooth minimal model f̃ : X̃ → C we have the Noether
equality

(5) 12χ(OX̃ )− c2(ωX̃ ) = c1(ωX̃ )2.

For a fibered surface with fiber genus g and base genus b we have by Riemann-Roch
and the Leray spectral sequence (see e.g. [Xia85])

χ(OX̃ ) = deg f̃∗ωX̃/C + (g − 1)(b− 1),

c2(ωX̃ ) =
∑

F sing. ∆χtop(F ) + 4(g − 1)(b− 1)

c1(ωX̃ )2 = ω2
X̃/C

+ 8(g − 1)(b− 1),
,

where ∆χtop(F ) denotes the differences of the topological Euler characteristics of
the given singular fiber F and a smooth fiber. We will use the equality in the form

(6) 12 deg f̃∗ωX̃/C −
∑

F sing.

∆χtop(F ) = ω2
X̃/C

.

Since ω2
X̃/C

is nef (Arakelov’s theorem, see e.g. [Deb82]), its self-intersection is

non-negative and we only have to check that C · δ =∑F sing. ∆χtop(F ). Both sides
are additive, so we can check the contribution for each singular fiber and each node
of such a fiber individually. A local equation xy = tn gives a contribution of n to
the intersection number. To resolve the singularity we have to replace the node
by a chain of n − 1 rational curves. The Euler characteristic of a nodal curve of
geometric genus g − 1 with such a chain differs by n from the Euler characteristic
of a smooth curve of genus g and this proves the claim. �

Slope bounds in general are studied in [Xia87]. Note that Xiao uses a related
ratio, namely

s̃(C) =
ω2
X̃/C

C · λ
= 12− s(C)
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that he also calls slope. In our slope convention he obtains the following upper
sharper bound, that was independently obtained in [CH88].

Theorem 3.4. Let f : X → C be a family of smooth curves, giving rise to a curve
C →Mg. Then the slope satisfies the inequality

0 ≤ s(C) ≤ 12− 4
g − 1

g
.

The lower bound is attained if and only if every fiber is smooth and irreducible. The
upper bound is attained for a family of hyperelliptic curves.

A curve is called trigonal, if it admits a degree three map to a projective line.
For curves of genus ≤ 4 all curves are trigonal, but from genus g ≥ 5 on this is no
longer the case. For g = 5 the locus of trigonal curves is the divisor BN1

3 discussed
in Section 3.3.

Theorem 3.5 ([SF00]). Suppose that f : X → C is a family of trigonal curves.
Then we have the slope bound

s(C) ≤ 36(g + 1)

5g + 1
,

which is attained for certain families of trigonal curves whose fibers are all irre-
ducible.

References: The recent survey by Farkas ([Far09a]) summarizes what is known
on the slopes of divisors on the moduli space of curves and its consequences for the
birational classification of Mg. The slope conjecture appears first in [HM98], and
the first counterexample appears in [FP05].

One can also use Teichmüller curves to prove slope estimates for divisors. The
bounds presently obtained in that way are as good (and as weak) as for ’moving’
families (compare [Che10a] to [Mor09]).

4. Variation of Hodge structures and real multiplication

The abstract concept of a variation of Hodge structure should be viewed as a
formalism of how the cohomology of a variety or a family of varieties looks like.
We indicate how the weight one situation, the most important for us, mimics the
situation of (families of) abelian varieties. The reader may as well think of families
of curves and their Jacobians. The advantage of the abstract concept is that one
can handle multilinear operators (such as dual and tensor products) easily. Even if
our main interest is weight one only, we need to consider endomorphisms of those
(variations of) Hodge structures and thus need the general concept.

Hodge structures. For any fieldK ⊂ R, we define a (weight k)K-Hodge structure
on the K-vector space V to be a decomposition

VC := V ⊗R C =
⊕

p+q=k

V (p,q)

into C-vector spaces, such that V (p,q) = V (q,p). We say that V is a Z-Hodge struc-
ture, if V is a Q-Hodge structure and V = Λ ⊗Z Q. (Sometimes Λ is called the
integral lattice.) A polarization of a K-Hodge structure is a C-valued bilinear form
Q on VC, such that the generalization of the Riemann bilinear relations hold, i.e.
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Q(V (p,q), V (r,s)) = 0 unless p = s and q = r and ip−qQ(·, ·) is positive definite. For
Z-Hodge structures we require moreover, that the polarization is Z-valued on Λ.

This definition is motivated by the fact that an abelian variety A = Cg/Λ
gives rise to a polarized Z-Hodge structure of weight one. In fact we define V =
Λ ⊗Z Q and Hodge theory of complex tori states that V = V (1,0) ⊕ V (0,1) with

V (1,0) = H0(A,Ω1
A) and V (0,1) = H1(A,OA) = V (1,0). The polarization is just

the Hermitian form and the required conditions are met because of the Riemann
bilinear relations.

Conversely, given a polarized weight one Z-Hodge structure (V,Λ, Q), we let
A = V (0,1)/Λ. The complex conjugation condition guarantees that this is a complex
torus and the polarizations is a Hermitian form which is the first Chern class of a
positive line bundle. Hence the complex torus is an abelian variety.

The following alternative viewpoint will generalize to families. Giving a Hodge
structure is the same as giving a decreasing filtration

. . . ⊇ F p(V ) ⊇ F p+1(V ) ⊇ . . .

of VC, such that VC = F p(V )⊕ F k−p+1. For the above decomposition one obtains
the filtration by

F p(V ) =
⊕

i≥p

V (i,k−i)

and conversely, the filtration determines the decomposition by

V (p,q) = F p(V ) ∩ F q(V ).

Period domains. From the filtration viewpoint it is obvious that the collection of
all possible Hodge structures on a fixed vector space V form a complex subvariety
D∨ of a product of Grassmann varieties. The polarization imposes a further posi-
tivity condition and the collection of all possible polarized Hodge structures form
a domain D in D∨.

We specialize to the case of weight one. Then

D = Hg = {Z ∈ Cg×g : ZT = Z and ℑ(Z) > 0}
is the Siegel upper half space. Even more special, for g = 1, i.e. for polarized rank
two weight one variations of Hodge structures the period domain is just the upper
half plane H.

Variation of Hodge structures The filtration viewpoint of Hodge structures
generalizes to families so as to maintain the correspondence of weight one with
abelian varieties. Recall that (for K a field or Z) a K-local system V on a base B
with fiber a K-vector space V is just a representation of π1(B) → GL(V ). Equiv-
alently, one may view a local system as a vector bundle over B whose transition
functions are locally constant, or yet equivalently, as a vector bundle over B with
a flat connection ∇. For families of curves (or abelian varieties), the local system
will be given by the monodromy representation of π1(B) on the first cohomology of
some fiber. Equivalently, the connection is the Gauss-Manin connection given by
parallel transport of (e.g. singular) cohomology classes. Given a local system V on
B, and suppose that the base is the complement of a normal crossing divisor ∆ in a
smooth, projective complex variety B. Then there is a natural ’Deligne’ extension
of the vector bundle V⊗OB to a vector bundle V on the whole base B. We will not
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discuss the details of how to construct this extension and refer to [Del70, Chapter
II.5] for a thorough definition.

For any field K ⊂ R and any complex (’base’) manifold B, we define a K-
variation of Hodge structures of weight k (VHS for short) to be a K-local system
V together with a filtration of V

F •(V) = (. . . ⊇ F p(V) ⊇ F p+1(V) ⊇ . . .)

with the following properties: i) For every point b ∈ B the stalks of the filtration
form a weight k K-Hodge structure on the stalk Vb. ii) Griffiths’ transversality
holds, i.e.

∇(F p(V)) ⊂ F p−1(V)⊗ Ω1
B
.

We define a Z-variation of Hodge structures to be a Q-VHS (VQ, F
•(V)) to-

gether with a Z-local system VZ with the property that VZ ⊗Z Q = VQ. A polar-
ization of a K-VHS is a locally constant C-bilinear map Q : VC ⊗VC → CB to the
constant (rank one) local system C on B, whose stalks at every point b ∈ B give a
polarization of the induced Hodge structure on Vb. Again, for Z-variation of Hodge
structures we require moreover, that the image Q(VZ,VZ) lies in the constant (rank
one) local system ZB .

Recall the setup in Section 3.1 how we associated to a map C → Mg a family
of curves f : X → B. The corresponding family of Jacobians has a weight one
Z-VHS that we can define explicitly as follows. Let X be a fiber over some point
b ∈ B. The local system is given by the monodromy representation of π1(B) on
H1(X,Z), in sheaf theory language as the higher direct image R1f∗Z.

A map between VHS is a linear map of the underlying local systems that is
compatible with the filtrations. The notion of VHS obviously admits all kinds of
operations of multilinear algebra. In particular, the dual of a K-VHS of weight k
is a K-VHS of weight −k. The tensor product of two K-VHS of weight k1 and k2
is a K-VHS of weight k1 + k2. The reader should keep in mind the particular case
that End(V) = V∨ ⊗ V carries a weight zero VHS.

The most important and remarkable theorem is Deligne’s semisimplicity result.

Theorem 4.1 (Deligne ([Del74]),[Sch73, Theorem 7.25]). Let B be complex man-
ifold, complement of a normal crossing divisor ∆ in an algebraic manifold B. If
(V, F •(V), Q) is a polarized K-VHS over B, then the monodromy representation

π1(B, b) → GL(Vb)

is completely reducible into VHS, i.e. any R-subrepresentation has a π1(B)-invariant
complement and inherits from F • a filtration that makes it into a sub-R-VHS.

One may want to decompose a local system into C-irreducible pieces. Deligne
defined in [Del87] the corresponding notion of C-VHS and the semisimplicity the-
orem still holds. Since this is much less common, we chose to avoid this concept
here at the cost of decomposing VHS over R only. This will be sufficient for the
main properties of Teichmüller curves thanks to Theorem 2.8.

In Section 5 we will prove a special instance of Theorem 4.1 with an application
to Teichmüller curves. We give here the necessary prerequisites that we want to
reduce the theorem to.

Theorem 4.2 ([Sch73, Theorem 7.22]). If B is a complex manifold, complement
of a normal crossing divisor ∆ in an algebraic manifold B, and (VK , F

•(V), Q) is
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a polarized K-VHS of weight k over B, then for any flat section e =
∑

p ep the

Hodge components ep ∈ V (p,k−p) are also flat.

Ingredients of the proof: Let ℓ be the least integer such that ep = 0 for
p > ℓ. Then one uses the following properties of period domains and period map-
pings. The function ϕ = i2ℓ−kQ(eℓ, eℓ) is plurisubharmonic for any VHS ([Sch73,
Lemma 7.19], see also [CMSP03]). It is bounded above by a consequence of the
nilpotent orbit theorem, hence constant by the hypothesis on B. The curvature
calculation that gives plurisubharmonicity can now be revisited to show that eℓ is
flat. The proof concludes by induction on ℓ. �

Period mapping. Suppose that locally on U ⊂ B we have trivialized the local
system V underlying a VHS. Then we may associate with b ∈ U the point in the
period domain determined by the filtration F •(Vb). This defines a map U → D,

if the VHS is polarized, or from the universal covering B̃ of B to D. This map is
called period map, it is known to be holomorphic ([Gri68]).

Concretely, for a rank two weight one VHS L, choose a basis {α, β} of L∨

locally on U (or on B̃) and let ω(b) be a non-zero section of L(1,0). Then the period
map is given by

b 7→ 〈β, ω(b)〉/〈α, ω(b)〉.
Less abstractly, take L to be the VHS of a family of elliptic curves, choose α, β
generators of H1(E,Z), where E is the elliptic curve in some fiber. Then the
contraction 〈α, ω(b)〉 is just the integration

∫
α
ω(b) of the one-form along some loop

representing α.

Hodge norm. In the section on Lyapunov exponents we want to measure sizes
of cohomology classes in H1(X,R) where X is a curve (or maybe also an abelian
variety). We can build a norm on H1(X,R) using the polarization Q as follows.
Write V = H1(X,R) ∋ v = v(1,0)+v(0,1) and let C be the linear map defined as ip−q

on V (p,q). Then define (v, w) = Q(Cv, w̄) and the Hodge norm is the associated
norm ||v||2 = (v, v).

Alternatively, for a curve X define the Hodge-* operator as ∗v = i(v(1,0) −
v(0,1)). Then (v, w) = Q(v, ∗w) is a scalar product on H1(X,R) and the associated
norm

||v||2 = (v, v) =
i

2

∫

X

v ∧ ∗v

is called the Hodge norm of v.

Period coordinates. As a motivation recall that the Torelli theorem states that
the period map for a family of curves is locally an embedding outside the hyperel-
liptic locus ([OS80]). We may thus view a period matrix a ’coordinate system’ for
Mg outside the hyperelliptic locus, but we should keep in mind that the Torelli map
is not (locally) onto, since dimMg < dimAg for g ≥ 4. We thus used quotation
marks for this coordinate system. The period matrix entries use all holomorphic
one-forms and all periods, but only absolute periods.

To contrast, for the strata ΩMg we do have period coordinates defined as fol-
lows. Fix locally around a given point (X,ω) a basis γ1, . . . , γN of H1(X,Z(ω),Z)
and map a neighboring flat surface (Y, η) to (

∫
γi
η)Ni=1 ∈ CN . This map is indeed

a local isomorphism (see [Vee90] for a proof using flat surface geometry, [HM79]
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and [Möl09] for algebraic proofs). We emphasize that these period coordinates use
only one of the one-forms on X but also relative periods.

4.1. Hilbert modular varieties and the locus of real multiplication

Let Ag = Hg/Sp2g(Z) be the moduli space of g-dimensional principally polarized
abelian varieties, where Hg is the g(g + 1)/2-dimensional Siegel upper half space.
Most abelian varieties only have the endomorphisms given by multiplication by an
integer. A locus where the endomorphism ring is strictly bigger will play a central
role when analyzing the VHS of a Teichmüller curve. We denote by RAo ⊂ Ag the
locus of abelian varieties with real multiplication by the order o, that we now define
precisely.

Consider a totally real number field F of degree g. A lattice in F is a subgroup
of the additive group of F isomorphic to a rank g free abelian group. An order in
F is a lattice which is also a subring of F containing the identity element. The ring
of integers in F is the unique maximal order.

Let A be a principally polarized g-dimensional abelian variety. We let End(A)
be the ring of endomorphisms of A and End0(A) the subring of endomorphisms
such that the induced endomorphism of H1(A;Q) is self-adjoint with respect to the
symplectic structure defined by the polarization.

Real multiplication by F on A is a monomorphism ρ : F → End0(A)⊗ZQ. The
subring o = ρ−1(End(A)) is an order in F , and we say that A has real multiplication
by o.

The locus of real multiplication RAo is the image of a union of Hilbert modular
varieties, defined as follows. Choose an ordering ι1, . . . , ιg of the g real embeddings

of F . We use the notation x(i) = ιi(x). The group SL2(F ) then acts on Hg by
A · (zi)gi=1 = (A(i) · zi)gi=1, where SL2(R) acts on the upper-half plane H by Möbius
transformations in the usual way.

Given a lattice M ⊂ F 2, we define SL(M) to be the subgroup of SL2(F ) which
preserves M . The Hilbert modular variety associated to M is

X(M) = Hg/SL(M).

Given an order o ⊂ F , we define

Xo =
∐

M

X(M),

where the union is over a set of representatives of all isomorphism classes of proper
rank two symplectic o-modules. If o is a maximal order, then every rank two
symplectic o-module is isomorphic to o⊕o

∨ (this also holds if g = 2; see [McM07]),
so in this case Xo is connected. In general, Xo is not connected, as there are non-
isomorphic proper symplectic o-modules; see the Appendix of [BM09].

We now construct the map X(M) → Ag in the simplified situation where
M = o⊕o

∨. Pick a Z-basis ω1, . . . , ωg of o and let B = (ιj(ωk))
g
j,k=1 and A = B−1.

Then the map

ψ : (τ1, . . . , τg) 7→ A · diag(τ1, . . . , τg) ·AT , Hg 7→ Hg

is equivariant with respect to the action of SL(o ⊕ o
∨) on Hg and its Ψ-image on

Hg, where Ψ is defined as follows. For a ∈ F let a∗ be the diagonal matrix with
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entries ιk(a), write

diag(γ) =

(
a∗ b∗

c∗ d∗

)
for γ =

(
a b
c d

)
∈ SL(o⊕ o

∨)

and we let

Ψ : γ 7→ diag(A, (AT )−1) · diag(γ) · diag(A, (AT )−1)−1, SL(o⊕ o
∨) → Sp(2g,Z).

Consequently ψ descends to the desired map X(M) → Ag. One easily checks that
abelian varieties with the period matrix (Ig, Adiag(τ1, . . . , τg)A

T ) or equivalently
with period matrix (B, diag(BT )−1) do indeed have real multiplication with o.

A criterion for real multiplication. The next theorem gives a criterion (see
[Del71, Section 4.4]) how to detect from the decomposition of a weight one VHS
that the corresponding family has real multiplication.

Theorem 4.3. Let V be the weight one VHS associated with a family of abelian
varieties f : A → C.

If the VHS V decomposes over Q as V1 ⊕ V2, then the family of abelian vari-
eties decomposes up to isogeny into two families of abelian varieties of dimension
rk(Vj)/2.

If we have a decomposition

VL = (⊕σ∈Gal(L/Q)/Gal(L/F )L
σ)

with the property that Lσ ∼= Lτ if and only if στ−1 fixes F , then the family of
abelian varieties has real multiplication by F .

Proof. A homomorphism between two abelian varieties gives rise to a C-linear
map between their universal coverings and a homomorphism between their period
lattices. Conversely, a homomorphism between the period lattices compatible with
a C-linear map of the universal coverings defines a homomorphism between two
abelian varieties. Similar statements hold in families.

Let End(VQ) denote the global sections of the local system End(VQ). We claim

that an element of ϕ ∈ End(VQ) ∩ End(V)(0,0) defines an element of End(A) ⊗ Q.
In fact, a multiple nϕ will lie in End(VZ) and thus defines a self-map between the
local system (of ’period lattices’). Lying in End(V)(0,0) says that nϕ preserves the
graded pieces of the Hodge filtration. The universal covering of an abelian variety A
can be identified with the tangent space at zero or with H1(A,OA). Consequently,
the map on the graded pieces associated with nϕ defines a family of C-linear maps
between the family of universal coverings.

In the first case the map idV1
is certainly a global section of End(VQ) that lies in

End(V)(0,0). In the second case we map a ∈ F to
∑

σ∈Gal(L/Q)/Gal(L/F ) σ(a) · idLσ .

This endomorphism certainly lies in End(V)(0,0). It also lies in End(VL) and the
action of Gal(L/Q) just renumbers the summands by the hypothesis on the Lσ.
Consequently, this endomorphism lies in End(VQ). �

4.2. Examples

We present some examples of families of curves whose VHS decomposes. We will
see later that the examples are related to Teichmüller curves.

Cyclic coverings. Consider the family of curves f : X → C with

X : yN = xa1(x− 1)a2(x− t)a3
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over C = P1 with coordinate t. Define 0 < a4 < N such that a1 + a2 + a3 +
a4 ≡ 0 mod N . This is a family of covers of the projective line ramified over 4
points 0, 1, t,∞. The automorphism ϕ(x, y) = (x, ζNy) generates the Deck group
of this covering. It acts on H1(X,C), H0(X,Ω1

X) and H1(X,OX) for every fiber
X of X and the decomposition of H1(X,C) commutes with parallel transport.
Consequently, the VHS V decomposes over C (see the remark after Theorem 4.1)
into the eigenspaces of ϕ. The quotient of X by the group generated by ϕ is a
family of projective spaces P1

x with coordinate x. Only when considered as family
of projective spaces with 4 marked points 0, 1, t,∞, this is a non-trivial family over
P1
t .

More concretely, one can explicitly write down a basis of holomorphic one-forms
in the eigenspace with eigenvalue ζiN as

ωi
j =

xj−1yidx

xb1,i(x− 1)b2,i(x− t)b3,i

for j = 1, . . . , 2 − b(i), where bk,i = ⌊iak/N⌋ and where b(i) =
∑4

k=1〈iak/N〉 −
1. Here 〈·〉 denotes the fractional part. Similarly, one can represent elements in
H1(X,OX) e.g. in Czech cocycles explicitly.

As a result, one obtains that for all i the eigenspaces Li corresponding to the
eigenvalue ζiN is of rank two. The details appear in many places in the literature,
e.g. [Bou01], [BM10b], [EKZ10].

For special values of the covering parameters the curve X has additional auto-
morphisms. E.g. take m,n odd and coprime, let N = 2mn and ai = mn±m± n.
Then the (Z/2Z)2-action on P1

x acting as double transpositions of the 4 branch
points lifts to a (Z/2Z)2-action on X . The VHS of the quotient family decomposes
over the reals into rank two VHS Li, where the Li are isomorphic to the Li ap-
pearing in the VHS associated with f : X → C, but only subset of indices i of
{1, . . . , N} appears. Consequently, by Theorem 4.3 the quotient family has RM
(on some part of its Jacobian). Details can be found in [BM10b].

5. Teichmüller curves

A Teichmüller curve C → Mg is an algebraic curve in the moduli space of curves
that is totally geodesic with respect to the Teichmüller metric.

We do not recall the definition of this metric since we only use two consequences.
First, the Teichmüller metric on Teichmüller space Tg is the same as the Kobayashi
metric explained below. Moreover, if C → Mg is a Teichmüller curve the universal
covering map is a map H → Tg to Teichmüller space. This map is also totally
geodesic with respect to the Teichmüller metric and those totally geodesic maps
H → Tg are called Teichmüller discs. The second property of the Teichmüller metric
we use is that every Teichmüller disc is the SL2(R)-orbit of a flat surface (X,ω)
or a half-translation surface (X, q) (see e.g. [Hub06, Chapter 5.3]). We say that
the (X,ω) or (X, q) generates the Teichmüller curve. In the sequel we exclusively
consider Teichmüller curves generated by flat surfaces (X,ω). For Teichmüller
curves generated by a half-translation surface (X, q) one can pass to the canonical
double covering and then apply the results below for some information about their
trace fields, slopes etc.
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Since C is an algebraic curve and C ∼= H/SL(X,ω) ([McM03a]), this implies
that SL(X,ω) is a lattice in SL2(R). A surface (X,ω) with this property is called
a lattice surface or, more frequently, a Veech surface.

Consequently, a Teichmüller curve is the image of the projection of a closed
SL2(R)-orbit from ΩMg to Mg. Also the converse holds:

Theorem 5.1 (Smillie, Weiss, [Vee95], [SW04]). If the SL2(R)-orbit of (X,ω) is
closed then (X,ω) generates a Teichmüller curve.

We emphasize that Teichmüller curves are closed in Mg, but never closed in

Mg, i.e. they are never compact curves, as we have seen in Proposition 2.4.

Motivation: Veech dichotomy. A flat surface satisfies Veech dichotomy or is
dynamically optimal if the following property of the straight line flow φθt holds. For
every fixed direction θ either φθt is uniquely ergodic or all trajectories of φθt are
closed. (Here saddle connections also count as closed trajectories.)

The fact that Veech surfaces are dynamically optimal is one of the key obser-
vations of [Vee89], but the proof has to be fixed concerning the unique ergodicity
statement. See [MT02] for a complete proof. The property Veech dichotomy is
not quite characterizing Veech surfaces: this holds for g = 2 ([McM05b]), but
counterexamples exist for higher genus. The most frequently used consequence of
Veech dichotomy is that on a Veech surface every direction that contains a saddle
connection is indeed periodic.

We give examples of Teichmüller curves before we turn to their algebraic char-
acterization.

5.1. Square-tiled surfaces and primitivity

A square-tiled surface is a flat surface (X,ω), where X is obtained as a covering
of a torus ramified over one point only and ω is the pullback of the holomorphic
one-form on the torus. (’Parallelogram-tiled’ would be slightly more accurate, but
square-tiled has become standard terminology.) The affine group of the torus is
SL2(Z) and such coverings change the affine group only by a finite amount. For
a more precise statement we introduce the following notions. Two subgroups Γ1

and Γ2 of SL2(R) are called commensurable, if there is a subgroup Γ that has finite
index both in Γ1 and in Γ2.

A translation covering π : (X,ω) → (Y, η) is a covering π : X → Y of Riemann
surfaces such that ω = π∗η.

Theorem 5.2 ([GJ00]). Let π : (X,ω) → (Y, η) be a translation covering. If π is
branched only over Z(η) or if g(Y ) = 1 and π is branched over at most one point,
then SL(X,ω) and SL(Y, η) are commensurable.

In view of Proposition 2.5 we restate that the trace field of a square-tiled surface
is Q. Square-tiled surfaces are a rich source of examples of Teichmüller curves. More
precisely:

Proposition 5.3. For every g and each connected component of every stratum of
ΩMg, the set of Teichmüller curves generated by square-tiled surfaces is dense (for
the analytic topology).

Proof. If a flat surface (X,ω) has all its period coordinates in 1
NZ[i] for some

N , then X admits a branched cover to the square torus branched over one point
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only. In fact, for any point P ∈ X choose a path γ joining a zero of ω to X and
map P to N ·

∫
γ
ω. This map is well-defined by hypothesis.

Since period coordinates are indeed coordinates on every stratum, we may
find a point with period coordinates in 1

NZ[i] (for appropriately large N) in a
neighborhood of every point of that stratum. �

There is a convenient way to present square-tiled surfaces. In order to specify
such a surface, with say d squares, it suffices to specify the monodromy of the
covering. The fundamental group of a once-punctured torus is a free group on
two generators. This monodromy is thus given by two permutations (πu, πr) on
d letters, corresponding to going up and going to the right, respectively. The
square-tiled surfaces drawn in Figure 2 is given in permutation representation by

1

1

2

2

3

3

4

4

5

5

6

6

7

7

88

9 9

Figure 2. The ’eierlegende Wollmilchsau’

(πr = (1234)(5678), πu = (1836)(2745)). The name will be explained later.

Algebraic and geometric primitivity. From the point of view of classifi-
cation of Teichmüller curves, square-tiled surfaces can be thought of as just one
example plus a large amount of combinatorial decoration. One thus wants to clas-
sify Teichmüller curves generated from flat surfaces that do not stem from coverings.
More precisely, we call a flat surface (X,ω) geometrically primitive if there is no
translation covering π : (X,ω) → (Y, η) with g(Y ) < g(X). A technical notion that
is easy to check and a criterion of geometric primitivity is the following. Recall first,
that the trace field of the affine group is unchanged under translation coverings.
This is proven in [McM03b]. The proof combines Theorem 5.2 with the ideas in
the proof of Proposition 2.5. We say that a Veech surface (X,ω) is algebraically
primitive, if g(X) = [K : Q], where K is the trace field of SL(X,ω). Examples
of algebraically primitive Veech surfaces are the n-gons where n is an odd prime
([Vee89]).

If (X,ω) is algebraically primitive, then (X,ω) is geometrically primitive by
Proposition 2.5. The converse does not hold in general. An infinite series of ex-
amples for this situation are given in [McM06a]. The surface in Figure 1 is an
example of this situation if we perform the Thurston-Veech construction with mul-
tiplicities dn = (n, 1, n, 1, n, 1). We say that a Teichmüller curve is (algebraically)
primitive, if a generating Veech surface is.

Proposition 5.4. The equivalence class of a flat surface (X,ω) given by the rela-
tion ’translation covering’ contains an elliptic curve or a unique ’minimal’ element,
i.e. there is a flat surfaces (Y, η) such that all translation surfaces in the class of
(X,ω) admit a translation covering to (Y, η).
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If the equivalence class contains an elliptic curve, i.e. if (X,ω) is square-tiled, the
uniqueness of the minimal element does not hold, since we may always postcompose
π by isogenies.

The major classification goal for Teichmüller curves seeks to classify those
curves generated by the minimal representatives. The proof of this proposition
is one of the corollaries in the next section.

5.2. The VHS of Teichmüller curves

The reader should now recall the conventions for curves and flat surfaces that we
set up in Section 3.1. Let L/Q be a Galois closure of K/Q.

Theorem 5.5 ([Möl06b, Prop. 2.4]). Let B be a finite unramified cover of a Teich-
müller curve generated by a flat surface (X,ω) and let f : X → B be the universal
family. Then the R-variation of Hodge structures defined by B decomposes into
sub-VHS

R1f∗R = (⊕σ∈Gal(L/Q)/Gal(L/K)L
σ)⊕M,

where L is the VHS with the standard ’affine group’ representation of SL(X,ω) ⊂
SL2(R), where Lσ are the Galois conjugates and where M is just some representa-
tion. Moreover, we have

2 deg(L(1,0)) = 2g(B)− 2 + |∆B |.
There is also a converse of this, i.e. a characterization of Teichmüller curves.

Theorem 5.6 ([Möl06b, Theorem 2.13]). Let f : X → B be a fibered surface and
suppose that the VHS has a rank two sub-VHS L, such that

2 deg(L(1,0)) = 2g(B)− 2 + |∆B |.
Then B → Mg is a finite unramified covering of a Teichmüller curve C → Mg

generated by a flat surface (X,ω).

A sub-VHS L as in the statement of the theorem was called ’maximal Higgs’
in [Möl06b]. Very few is known on which representations occur for M or what
their numerical data (see the subsequent chapters) are. Note that for square-tiled
surfaces M is almost the whole VHS!

We give two applications before we turn to the proof of these theorems.

Proof of Proposition 5.4. Suppose that f : X → B and g : Y → B are
two families of curves over a (finite covering of a) Teichmüller curve that arise from
a translation covering π : (X,ω) → (Y, η) of generating flat surfaces. Then the VHS
associated with both f and g contains the generating local system L and hence also
its Galois conjugates. Note that the one-form ω on the family of Jacobians is zero
on any complement to the abelian variety associated with ⊕σL

σ.
Consequently, given (X,ω) we take the limit over all (ordered by inclusion)

abelian subvarieties A ⊂ Jac(X) such that ω|A = 0 of the normalization of the
image Z of X in Jac(X)/A. Obviously, we can provide Z with a one-form ωZ , such
that (X,ω) is a translation covering of (Z, ωZ). Moreover any (Y, η) covers (Z, ωZ)
since we may take A = Ker(Jac(X) → Jac(Y )), where the map comes from viewing
Jac as Albanese variety. �

Corollary 5.7. The family of Jacobians associated with the fibered surface f : X →
B over a Teichmüller curve decomposes up to isogeny into two families of abelian
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varieties g1 : A1 → B and g2 : A2 → B of dimension r = [K : Q] and g − r
respectively. Moreover, g1 : A1 → B has real multiplication by K.

Proof. Given the decomposition in Theorem 5.5 and the criterion Theo-
rem 4.3 it suffices to verify the condition in the second statement of that criterion.
Moreover, once we verify this condition for L it follows for the other Lσ by Galois
conjugation.

If L ∼= Lσ then the traces of the underlying representation have to be fixed by
σ, hence σ has to fix K. Conversely, suppose that L 6∼= Lσ for some σ fixing K.
Then both L and Lσ appear in the VHS decomposition of V. Let ϕ be some pseudo-
Anosov element in SL(X,ω) with dilatation λ and t(λ) = tr(Dϕ) = λ + λ−1 > 2.
Both the fibers of L and of Lσ in H1(X,L) are in the kernel of ϕ∗+(ϕ∗)−1− t · id ∈
End(H1(X,L)). Since the function t(λ) is monotone for λ ∈ (1,∞), this implies
that λ is a multiple eigenvalue of the action of ϕ on H1(X,L). But λ is known
to be the largest eigenvalue of this action and simple by Perron-Frobenius (see e.g.
[McM03a, Theorem 5.3]). This contradiction concludes the proof. �

Real multiplication and the classification problem. We give some indication
of why real multiplication might be useful to classify Teichmüller curves and a
warning why one should not be too optimistic. See Section 5.5 for more details on
the classification problem.

Suppose for simplicity that we are interested in algebraically primitive Teich-
müller curves only. The locus of real multiplication RAo in Ag is the image of
Hilbert modular varieties X(M). They are of dimension g while dimAg = g(g +
1)/2. Since dimMg = 3g − 3, for large enough g the expected dimension of the
intersection X(M)∩Mg considered in Ag via the map defined in Section 4.1 resp.
via the Torelli map is zero. Hence there should be no algebraically primitive Teich-
müller curves for large genus – which is known to be false as is shown in the initial
paper [Vee89] already.

On the other hand the union of all Hilbert modular varieties is Zariski dense
in Ag by the Borel density theorem, so this explains why one should be cautious.

There is an analogous conjecture of Coleman stating that there are no Shimura
curves (see Section 6.5) in Ag whose generic point lies in Mg for g large enough.
Again, being a Shimura curve gives additional endomorphisms or at least additional
Hodge cycles, so one can make a similar dimension heuristics. But there has not
been much progress in the last decade on this question.

5.3. Proof the VHS decomposition and real multiplication

The proof of Theorem 5.5 was given in [Möl06b] using C-VHS and the corre-
sponding C-version of the Semisimplicity Theorem 4.1. Moreover, the fact that
trace fields are totally real was deduced from that proof. We give here the proof for
algebraically primitive Teichmüller curves, reducing the statement to Theorem 4.2.
Theorem 2.8 allows us to stay entirely within the more well-known context of R-
VHS.

Proof (Algebraically primitive case): Let V = R1f∗R be the R-local
system underlying the weight one VHS of the given family of curves. Since we deal
with a Teichmüller curve, the family is generated as the SL2(R)-orbit of some flat
surface (X,ω). That is, X is the fiber of f over some point b ∈ B and in that fiber
ℜ(ω) and ℑ(ω) generate a rank two real sub-vector space L of Vb = H1(X,R).
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All the other fibers of f are the image of (X,ω) for some matrix A ∈ SL2(R). All
elements in γ ∈ π1(B) can be represented in the universal covering of B by a path
from (X,ω) to Aγ · (X,ω) for some matrix Aγ ∈ SL(X,ω) ⊂ SL2(R). The matrix
Aγ acts, by definition of the action of SL2(R) by the standard representation on L.
In particular it preserves the subspace L and we have found a local subsystem L.

Now we use the simplifying additional hypothesis that r = g. Consequently,
there is a collection of γi ∈ SL(X,ω) such that the traces of γi generate a field of
degree r over Q. We denote by ι1, . . . , ιr the different embeddings of K into R and
choose automorphisms σj of the Galois closure of K/Q such that σj ◦ ι1 = ιj . Since
V is defined over Q the σj-images of L are also K-local subsystems of V. Since the
standard two-dimensional representation of the lattice SL(X,ω) is irreducible, so
are the Galois conjugates and consequently, Lσj ∩ Lσk = 0 for j 6= k.

To sum up, we know that

R1f∗R = (⊕r
j=1L

σj )

as local systems. Said differently, we have a decomposition V = H1(X,R) =
(⊕r

j=1Lj) into π1(B)-stable sub-vector spaces and we have to show that the Hodge
filtration

0 ⊂ F 1(V) ⊂ V = (R1f∗R)⊗R OB

intersects each of the summands Lj ⊗R OB in a vector bundle. Dimensions of
intersections of vector bundles are lower semicontinuous, and if the dimension is
constant, such an intersection is again a vector bundle. Hence it suffices to show
that at a general point (which we may suppose b ∈ B to be)

(7) Lj = (Lj ∩ V (1,0))⊕ (Lj ∩ V (0,1))

for all j, since then a dimension jump in a special fiber would lead to a dimension
contradiction.

Consider the element Pj ∈ Hom(V, V ) that consists of projection to the sub-
space Lj composed with the inclusion. Since Lj is π1(B)-invariant, Pj is a flat
global section of the local system Hom(V,V).

On the other hand, Hom(V,V) carries a Hodge structure of weight zero and we
may decompose Pj into its Hodge components

Pj = P
(1,−1)
j ⊕ P

(0,0)
j ⊕ P

(−1,1)
j ,

where the upper index indicates the shift in bidegree, if we consider Pj as en-
domorphism. Now we apply Theorem 4.2 to conclude that all the components,

in particular P
(1,−1)
j and P

(−1,1)
j are also flat. The only flat global sections of

⊕r
j=1Lj are Cg acting diagonally, since the Lj (as π1(B)-representations) are ir-

reducible. In particular, no power of a non-zero global section vanishes. Since

(P
(1,−1)
j )2 = 0 = (P

(−1,1)
j )2, these sections have to be zero. Hence Pj = P

(0,0)
j and

this implies (7), which we needed to show. �

Instead of fully proving the characterization we highlight one of the main ar-
guments of the proof, the use of the Kobayashi metric in the next proposition. A
fully self-contained proof will appear soon in a paper of A. Wright.

Proposition 5.8. Let f : X → B be a fibered surface and suppose that the VHS
has a rank two sub-VHS L, such that the monodromy representation underlying L

is the Fuchsian representation of π1(B) = H/Γ in SL2(R). Then B → Mg is a
finite unramified covering of a Teichmüller curve C → Mg.
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This is the only place in this text, where the Teichmüller metric actually ap-
pears. We use that the Teichmüller metric on Teichmüller space is indeed equivalent
to the Kobayashi metric kW , which is defined for any complex space W as follows.

We denote by d∆ the Poincaré metric on the unit disc ∆ and for all x, y ∈ W
we define a chain from x to y by points x0, x1, . . . , xn ∈ ∆ together with maps
holomorphic fi : ∆ →W such that

f1(x0) = x, fj(xj) = fj+1(xj), j = 1, . . . , n− 1, fn(xn) = y.

Then

kW (x, y) = inf

n∑

i=1

d∆(xi−1, xi),

where the infimum is over all chains from x to y.
From the definition already one can deduce that all holomorphic maps are

distance non-increasing for the Kobayashi metric and that a composition of two
holomorphic maps is a Kobayashi isometry only if the first map is a Kobayashi
isometry, too.

Proof. The VHS L gives rise to a period map p from the universal cover of B
to the period domain of L, i.e. p : H → H. By definition, this map is equivariant with
respect to the action of π1(B) on the domain and by the monodromy representation
on its range. Since the image of the monodromy representation is Fuchsian, we may
pass to the quotient map p. Since the two quotient surfaces are isomorphic to B
and since we may assume that g(B) ≥ 2, Riemann-Hurwitz implies that p is an
isomorphism. This implies that p is a Mobius transformation. On the other hand,
p factors as

p : H → Tg → Hg → H,

where the first two maps are the universal covering maps associated with the maps
C → Mg and with the Torelli map Mg → Ag. The composition H → Hg is the
period map for the full VHS V, and since L is a factor of V, we may represent the
period map of V as a composition of this map and the projection onto one factor.

Finally, p is a composition of holomorphic maps and an isomorphism, hence
an isometry for the Kobayashi metric. Consequently, the first map H → Tg is an
isometry for the Kobayashi metric, too. This implies that B → Mg is a finite cover
of a Teichmüller curve. �

5.4. Cusps and sections of Teichmüller curves

A Teichmüller curve C is obtained as H/SL(X,ω), so the set of cusps ∆ corresponds
to the set of SL(X,ω)-conjugacy classes of maximal parabolic elements. In this
section we first describe the stable curves associated with ∆C ⊂ Mg and also
neighborhoods of these points to perform intersection theory calculations. We then
construct sections of the family of curves over C using the singularities Z(ω) and
calculate their intersection number.

Let θ be a fixed direction of some parabolic element of SL(X,ω). By conjugation
we may suppose that θ is the horizontal direction. Then the geodesic g−t(X,ω) runs
into the cusp. We now describe how to obtain the surfaces along this geodesic. The
horizontal direction is parabolic, in particular decomposes into maximal cylinders
Ci of heights hi and widths wi for i ∈ I. Cut the surface X open along the core
geodesics (at height hi/2) of the cylinders. On the cut-open surface X0 the original
cylinders are decomposed into their top and bottom part C⊤

i , C
⊥
i ⊂ X0. We define
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strips U⊤
i ⊂ C⊤

i as the lower half (of height hi/4) of the top part and U⊥
i ⊂ C⊥

i as
the top half (of height hi/4) of the bottom part. For each i take a cylinder Zi of
height (e2t − 1/2)hi and width wi. Glue the top strip of height hi/4 of Zi to U

⊤
i

and the bottom strip of height hi/4 of Zi to U
⊥
i to form a flat surface (Yt, ηt).

Obviously, the holomorphic map z 7→ e−tz on each cylinder extends to a bi-
holomorphism between the two Riemann surfaces g−t(X,ω) and (Yt, ηt).

Finally we recall that the topology from the complex structure of Mg can be
phrased in quasi-conformal language as follows. A basis of neighborhoods of the
stable surface X∞ consists of stable curves X together with (’smaller and smaller’)
compact sets VX and V∞ around the cusps of X and X∞ such that there is a K-
quasiconformal map ϕ : X \ VX → V∞ (with K close to one). This together with
the previous description implies that g−t(X,ω) converges to the stable curve where
we replace each cylinder Ci of (X,ω) by two half-infinite cylinders. We summarize:

Proposition 5.9. The stable curves corresponding to the boundary points ∆C of
a Teichmüller curve C → Mg are obtained by choosing a parabolic direction of a
generating flat surface (X,ω) and replacing each cylinder by a pair of half-infinite
cylinders whose points at i∞ resp. at −i∞ are identified.

Since half-infinite cylinders are conformal to punctured discs, we may equiva-
lently replace each cylinder by two punctured discs to obtain the (punctured) nor-
malization of the stable curve. The stable curve itself is then obtained by adding
the zeros to the punctured discs and identifying the corresponding pairs.

We defined a Teichmüller curve to be a curve in Mg and saw that Teichmüller
curves stem from SL2(R)-orbits of flat surfaces in ΩMg. If we quotient by scalar
(of absolute value one) or equivalently by the SO2(R)-action we obtain a curve
in PΩMg, more precisely in PΩMg(µ), where µ is the signature of a generating
surface. We call this curve the canonical lift of the Teichmüller curve.

Proposition 5.10. Suppose that C is a Teichmüller curve generated by an abelian
differential (X,ω) in ΩMg(µ) and let µ′ be a degeneration of the signature µ. Then

the canonical lift of C to PΩMg(µ) is disjoint from PΩMg(µ
′).

The holomorphic one-form given as the SL2(R)-image over each smooth fiber
over a Teichmüller curve extends to a section ω∞ of the dualizing sheaf (i.e. a stable
one-form) for each singular fiber X∞ over the closure of a Teichmüller curve.

Proof. The claim is obvious over the interior of the moduli space. We only
need to check the disjointness over the boundary. We may approach the boundary
along a geodesic ray. In the construction of the limiting surface the open subset

H = X0 \
⋃

i∈I

(U⊤
i ∪ U⊥

i )

is never touched as explained at the beginning of this section. This subset H
contains the zeros of ω. Since the multiplicity of a zero is a local property, this
implies the claim. �

Corollary 5.11. Let X∞ be a stable curve corresponding to a boundary point of
a Teichmüller curve. Then X∞ does not contain separating nodes. In particular
C · δi = 0 for i ≥ 1.

For each irreducible component Y of X∞ the number of zeros of ω∞ is equal to
2g(Y )− 2 + n, where g(Y ) is the arithmetic genus of Y and n = |Y ∩X∞ \ Y |. In
particular each irreducible component Y of X∞ contains at least one zero of ω∞.
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Proof. If a node was separating, then by the description of the degeneration
a core curve γi of a cylinder Ci was separating. If this was true, view X \ Ci =
X⊤∪X⊥ both as gluing of cylinders. For a translation structure saddle connections
on the top of a cylinders have to be glued to the bottom of a cylinder. But the
total length of top sides of cylinders of X⊤ exceeds the total length of bottom
sides of cylinders in X⊤. It is thus impossible to form a closed surface X⊤ with
boundary ∂Ci with the gluing rules just described. This contradiction proves the
first statement.

The second statement is an immediate consequence of the degeneration descrip-
tion and the Gauss-Bonnet formula. �

Note that for a quadratic differential it is permitted to glue a saddle connection
on the top of a cylinder to another one on the top of a cylinder. Consequently, the
above proof does not apply to Teichmüller curves generated by quadratic differen-
tials. They may indeed have degenerate fibers that are stable curves with separating
nodes.

Sections defined by singularities. Let C be a Teichmüller curve generated
by (X,ω) ∈ ΩMg(m1, . . . ,mk). The SL2(R)-orbit of each singularity Z defines
a section S(Z) over the Teichmüller disc H = SO2(R)\SL2(R). The affine group
permutes the singularities. Since there are only finitely many of them, there is a
finite index subgroup of Γ of SL(X,ω) that fixes each of the singularities. We may
take Γ even smaller, but still of finite index, and suppose that all the conditions of
Section 3.1 are met for Γ. Let B = H/Γ → C be a finite unramified cover of the
Teichmüller curves such that the zero Zi of order mi defines a section σi (not only
a multi-section) with image Si of the pullback family f : X → B. Such a section
can be used to define a lift of B to Mg,1.

Proposition 5.12. The section Si has self-intersection number

S2
i =

−χ
2(mi + 1)

,

where χ = 2g(B) − 2 + |∆| and ∆ is the set of cusps in B. In particular the
intersection number of B with ωi,rel, which is by definition equal to −S2

i , is given
by

B · ωi,rel =
B · λ− (B · δ)/12

(mi + 1)κµ
,

where κµ = 1
12

∑k
j=1

mj(mj+2)
mj+1 .

Proof. Let L ⊂ f∗ωX̃/B be the (’maximal Higgs’, see [Möl06b]) line bundle

whose fiber over the point corresponding to [X] is C · ω, the generating differential
of the Teichmüller curve. The property ’maximal Higgs’ says by definition that

(8) deg(L) = χ/2.

Let S be the union of the sections S1, . . . , Sk. Pulling back the above inclusion to
X gives an exact sequence

0 → f∗L → ωX̃/B → OS




k∑

j=1

mjSj


→ 0,
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since the multiplicities of the vanishing locus of the generating differential of the
Teichmüller curve are constant along the whole compactified Teichmüller curve.

This implies that ωX̃/B is numerically equal to f∗L+∑k
j=1mjSj . By the adjunction

formula we get

S2
i = −ωX/B · Si = −miS

2
i − deg(L),

since the intersection product of two fibers of f is zero. Together with (8) we thus
obtain the desired self-intersection formula.

We write the Noether formula (5) as

12(B · λ)− (B · δ) = ω2
X̃/B

and calculate

ω2
X̃/B

= (f∗L+

k∑

j=1

mjSj)
2 =

k∑

j=1

m2
jS

2
j + 2deg(L)

k∑

j=1

mj

=
χ

2

k∑

j=1

−mj

mj + 1
+ 2mj =

χ

2

k∑

j=1

mj(mj + 2)

mj + 1

= −12(mi + 1)κµS
2
i .

Solving for −S2
i gives the claimed formula. �

In Proposition 2.3 we saw that in the interior of Mg a Teichmüller curve gen-
erated by a hyperelliptic curve always stays inside the hyperelliptic locus. By
contraposition the argument implies that a Teichmüller curve generated by a non-
hyperelliptic curve does not meet the hyperelliptic locus in Mg. In boundary points
the behavior is much more subtle. Sometimes the dichotomy can still be proved,
which will be important for the non-varying results in Section 6.4.

Proposition 5.13. Let C be a Teichmüller curve generated by (X,ω) in ΩMg(µ).
Suppose that an irreducible degenerate fiber X∞ over a cusp of C is hyperelliptic.
Then X is hyperelliptic, hence the whole Teichmüller curve lies in the locus of
hyperelliptic flat surfaces.

Moreover, if µ ∈ {(4), (3, 1), (6), (5, 1), (3, 3), (3, 2, 1), (8), (5, 3)} and (X,ω) is
not hyperelliptic, then no degenerate fiber of the Teichmüller curve is hyperelliptic.

The last conclusion does not hold for all strata. For instance, Teichmüller
curves generated by a non-hyperelliptic flat surface in the stratum ΩM3(2, 1, 1)
always intersect the hyperelliptic locus at the boundary. The proof is an intersection
number argument similar to the non-varying results for Lyapunov exponents below.
It can be found in [CM11].

Proof. Suppose that the stable model X∞ of the degenerate fiber is irre-
ducible of geometric genus h with (g − h) pairs of points (pi, qi) identified. A
semi-stable model of X∞ admits a degree two admissible cover of the projective
line if and only if the normalization Xn of X∞ is branched at 2h+2 branch points
over a main component P1 with covering group generated by an involution φ and,
moreover, for each of the 2(g − h) nodes there is a projective line intersecting Xn

in pi and qi = φ(pi) with two branch points.
In the flat coordinates of Xn given by ω, the surface consists of a compact sur-

face X0 with boundary of genus h and 2(g−h) half-infinite cylinders (corresponding
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to the nodes) attached to the boundary of X0. We may define X0 canonically by
sweeping out the half-infinite cylinder at pi (or qi) with lines of slope equal to the
residue (considered as element in R2) of ω at pi until such a line hits a zero of ω,
i.e. a singularity of the flat structure.

With this normalization, the above discussion shows that for irreducible stable
curves the hyperelliptic involution exchanges the half-infinite cylinders correspond-
ing to pi and qi and it defines an involution φ of X0. As in the smooth case, φ acts
as −Id on X0.

To obtain smooth fibers over the Teichmüller curve (in a neighborhood of X∞)
one has to glue cylinders of finite (large) height in place of the half-infinite cylinders
of appropriate ratios of moduli. The hypothesis on φ acting on X0 and on the half-
infinite cylinders implies that φ is a well-defined involution on the smooth curves.
Moreover, φ has two fixed points in each of the finite cylinders and 2h + 2 fixed
points on X0, making 2g + 2 fixed points in total. This shows that the smooth
fibers of the Teichmüller curve are hyperelliptic.

To complete the proof we have to consider the two-component degenerations
for µ ∈ {(3, 1), (5, 1), (5, 3)}. In both cases, the hyperelliptic involutions can nei-
ther exchange the components (since the zeros are of different order) nor fix the
components (since the zeros are of odd order).

For µ = (3, 3) a hyperelliptic involution φ cannot fix the component, since 3 is
odd. It cannot exchange the two components and exchange a pair of half-infinite
cylinders that belong to different nodes, since φ could then be used to define a
non-trivial involution for each component. This involution fixes the zeros and this
contradicts that 3 is odd. If φ exchanges all pairs of half-infinite cylinders that
belong to the same node, φ has two fixed points in each cylinder on the smooth
’opened up’ surface. Now we can apply the same argument as in the irreducible
case to conclude that the ’opened up’ flat surfaces are hyperelliptic as well.

For µ = (3, 2, 1) a hyperelliptic involution can neither fix the component with
the (unique) zero of order three, since 3 is odd, nor map it elsewhere, since the
zeros are of different order. �

5.5. The classification problem of Teichmüller curves: state of the art

One of the main questions of the theory is the classification of Teichmüller curves.
In this section we summarize what is known today and what the open problems
are. It also explains to which extent the VHS decomposition and real multiplication
have so far been useful for solving the classification problem.
Genus two. In genus two the notion of primitive and algebraically primitive co-
incide. In the stratum ΩM2(2) an infinite series of primitive Teichmüller curves
was found independently in [Cal04] and in [McM03a]. This was shown to be the
complete list of primitive Teichmüller curves in this stratum ([McM05a]). This is
the only stratum where a complete classification is known, since square-tiled sur-
faces in this stratum have been classified in [HL06b] and also in [McM05a]. In
the stratum ΩM2(1, 1) primitive Teichmüller curves have been classified: There is
only one example, the regular decagon with opposite sides identified. The proof in
[McM06b] relies on a ’torsion’ characterization of periodic points ([Möl06a]) on
those Teichmüller curves, that in turn relies on the VHS decomposition in Theo-
rem 5.5.
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Infinite series for fixed genus. The only genera that are known to have an
infinite number of primitive Teichmüller curves are g = 2, 3, 4. They are not al-
gebraically primitive for g = 3 and g = 4. The construction of these examples is
in [McM06a]. A classification of Teichmüller curves with quadratic trace field in
these strata has recently been announced by Lanneau and D.-M. Nguyen.
Infinite series of (algebraically primitive) Teichmüller curves. Besides the
examples in low genus g ≤ 4, the only known primitive Teichmüller curves have a
triangle group as affine group. These are the original examples of Veech ([Vee89])
and Ward, as well as a series of examples of primitive Teichmüller curves realizing
all possible triangle groups as affine groups in [BM10b].
Finiteness results. In the hyperelliptic component of ΩMg(g−1, g−1) there are
(for given g) only finitely many algebraically primitive Teichmüller curves. This
is again a consequence of the ’torsion condition’ ([Möl08]). These components
are particular, since they have more than one zero to apply the criterion, but
not too many zeros and moreover the hyperelliptic involution in order to reduce
combinatorial complexity of the problem.

A more conceptual approach in order to exploit real multiplication for the
classification of algebraically primitive Teichmüller curves was taken in [BM09].
It combines the boundary behavior of the real multiplication locus in Mg with
the ’torsion condition’ to give finiteness in the stratum ΩM3(3, 1). Moreover, the
real multiplication condition gives an algorithm and quite convincing numerical
evidence for finiteness in the stratum ΩM3(4)

hyp.

Open problems. Finiteness for the number of algebraically primitive Teichmüller
curves in the strata with many zeros seems likely to hold, following the torsion point
approach in [Möl06a], but the combinatorics might be so difficult that essential
new ideas are needed even for strata in low genus. On the other hand, the approach
in [BM09] should be extended to give finiteness at least for the strata ΩMg(2g−2).

If we consider square-tiled surfaces instead of algebraically primitive curves,
the smallest open strata are ΩM2(1, 1) and ΩM3(4). The combinatorial approach
of [HL06b] goes as follows. Take the ’obvious’ combinatorial invariants and show
that one can connect any pair of cusps by passing from one direction on a given flat
surface to another. This approach might work also in both cases just mentioned,
but the reader should be warned of the combinatorial complexity.

6. Lyapunov exponents

6.1. Motivation: Asymptotic cycles, deviations and the wind-tree model

Fix a generic surface (X,ω) in some stratum ΩMg(m1, . . . ,mk) and a generic point
P on that surface. Consider a vertical straight line starting at P and close it up
along a small horizontal slit I once this slit is hit for the first time as in Figure 3.
We thus obtain a closed cycle c1 ∈ H1(X,R).

We let cn ∈ H1(X,R) be the cycle obtained by closing up the n-th hit on I.
The limit

c = lim
n→∞

cn
||cn||

exists and is called asymptotic cycle. We are interested on the deviation from this
first order approximation. For that purpose we provide H1(X,R) with the Hodge
norm and let p2 be the projection onto the orthogonal complement of V1 = 〈c〉.
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Figure 3. Straight line converging to the asymptotic cycle

Then the limit

λ2 = lim
n→∞

log ||p2(cn)||
log n

exists. In fact, the projections p2(cn) normalized to Hodge length one converge
and we let V2 be the subspace generated by the limit. Then we define p3 to be the
projection onto the orthogonal complement of V1 and V2 and let

λ3 = lim
n→∞

log ||p3(cn)||
log n

.

This process can be repeated to produce a full flag on H1(X,R).
For another example we consider the wind-tree model for the diffusion of gas

molecules. In this model a particle drifts in billiard paths in the plane or the space
and is reflected at randomly placed scatterers. Mathematically even the simplified
model of scatterers places in a regular pattern at fixed positions is interesting. We
restrict even further to the regular pattern being the lattice Z2 in the plane and
the scatterers being boxes of side lengths (a, b) with a, b ∈ (0, 1) centered at the
lattice points as shown in Figure 4. For some (e.g. rational) values of parameters
(a, b) there is a dense subset of S1 such that trajectories in that given direction
are periodic. Clearly, periodicity is a rare phenomenon. But still, for almost every
direction the directional flow is recurrent.

On the other hand, most trajectories make excursions further and further out.
Let φθt denote the flow in the direction θ for time t. In fact, for every (a, b) there is
some λ2 such that for almost every direction θ and almost every starting point we
have

lim
t→∞

sup
log d(φθt (x), x)

log t
= λ2.

The (non-)dependence of λ2 on the parameters (a, b) is one of the main motivations
of the notion ’non-varying’ that we introduce below.

References: In both cases the answer to the problem is related to Lyapunov
exponents as defined in the following section. The strata of ΩMg carry a finite
invariant measure µgen ([Mas82], [Vee82]) with support equal to the whole stratum
and the λi that stem from the deviations are the Lyapunov exponents for the Teich-
müller geodesic flow acting on the Hodge bundle over ΩMg with respect to µgen.
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Figure 4. Wind-tree model

For the wind-tree model the λ2 turns out to be the second Lyapunov exponent
for the Haar measure supported on a Teichmüller curve in some cases, e.g. when a
and b are rational, and for the Masur-Veech measure in the remaining cases.

The proof of these results will not be discussed here. It can be found in [Zor94]
and [Zor99] (see also [Zor06]) for asymptotic cycles and in [HLT09] and [DHL11]
for the wind-tree model.

6.2. Lyapunov exponents

We first state Oseledec’s general theorem for the existence of Lyapunov exponents
and then explain the instances we want to apply this theorem to.

Theorem 6.1 (Oseledec). Let gt : (M,µ) → (M,µ) be a flow that acts ergodically
on a space M with finite measure µ. Suppose that the action of t ∈ R+ lifts
equivariantly to a flow also denoted by gt on some measurable real vector bundle V
on M . Suppose there exists a norm || · || on V (of course not supposed to be gt-
equivariant) such that for all t ∈ R+

∫

M

log(1 + ||gt||(m))µ(m) <∞,

where ||gt||(m) denotes the operator norm at the point m induced by the map gt
and the norm on V .

Then there exist real constants λ̃1 > · · · > λ̃k and a filtration

V = V1 ) · · · ) Vk ⊃ 0

by measurable vector subbundles such that, for almost all m ∈ M and all v ∈
Vm \ {0}, one has

||gt(v)|| = exp(λ̃it+ o(t)),

where i is the maximal value such that v ∈ (Vi)m.

The λ̃i and the Vi do not change if || · || is replaced by another norm of ‘com-
parable’ size (e.g. if one is a scalar multiple of the other).
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Note that the λ̃i and Vi are unchanged if we replace the support of µ by a finite
unramified covering with a lift of the flow and the pullback of V .

From now on we adopt the convention to repeat the exponents λ̃i according
to the rank of Vi/Vi+1 such that we will always have 2g of them, possibly some of
them equal. The resulting sequence of numbers

λ1 = λ̃1 ≥ λ2 ≥ · · · ≥ λ2g = λ̃k

is called the spectrum of Lyapunov exponents of gt. If V is a symplectic vector
bundle, the spectrum is symmetric, i.e. λg+k = −λg−k+1.

We will use measures µ on ΩMg that will even be SL2(R)-invariant and such
that the Teichmüller geodesic flow gt acts ergodically. Let V be the restriction of
the real Hodge bundle (i.e. the bundle with fibers H1(X,R)) to the support M of
µ. Let gt be the lift of the geodesic flow to V via the Gauss-Manin connection. The
norm on V will be the Hodge norm, the norm associated with the bilinear form Q
defined in Section 4.

To sum up, the Lyapunov exponents for the Teichmüller geodesic flow on ΩMg

measure the logarithm of the growth rate of the Hodge norm of cohomology classes
during parallel transport along the geodesic flow. The reader may consult [For06]
or [Zor06] for a more detailed introduction to this subject.

Most of our results will be about the sum of the top half of the Lyapunov
exponents defined as

L =

g∑

i=1

λi.

Two sorts of measures. We will apply Oseledec’s theorem in two instances. The
first are Masur-Veech measures µgen ([Mas82], [Vee82]) with support equal to the
whole hypersurface of flat surfaces of area one in a connected component. These
measures are constructed using period coordinates, giving the unit cube (Z[i])N

volume one. Since coordinate changes are in the symplectic group with integral
coefficients, this is a well-defined normalization. The sum of Lyapunov exponents
for these measures can be calculated by first calculating Siegel-Veech constants
using [EMZ03] and then transferring the information using [EKZ11]. We will
denote by LΩMg(m1,...,mk) the sum of Lyapunov exponents for the measure µgen

supported on the stratum ΩMg(m1, . . . ,mk). It is a combinatorially very involved
procedure to actually compute these values.

When talking about Lyapunov exponents for Teichmüller curves we take µ to
be the measure on the unit tangent bundle T 1B to a Teichmüller curve that stems
from the Poincaré metric ghyp on H with scalar curvature −4. This normalization is
equivalent to require that our choice of scaling of the geodesic flow gt = diag(et, e−t)
has unit speed. It implies that the first Lyapunov exponent (corresponding to the
subbundle ℜω where (X,ω) is a generating flat surface of the Teichmüller curve)
equals one. This normalization is consistent with the normalization of µgen where
also the first Lyapunov exponent is one. It is thus meaningful to compare Lyapunov
exponents for µ and for the µgen of the stratum the generating flat surface lies in.

In both cases, the integrability condition of Oseledec’s theorem has to be veri-
fied. For µgen this is done using a discretization and the language of matrix-valued
cocycles in [Zor99], see also [Zor06]. For µ on a Teichmüller curve this can be
deduced in continuous time from [For02, Lemma 2.1 and Corollary 2.2]. It holds
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in much greater generality as we shall soon see, since Lemma 6.10 below can also
be used here.

6.3. Lyapunov exponents for Teichmüller curves

The bridge between the ’dynamical’ definition of Lyapunov exponents and the ’al-
gebraic’ method applied in the sequel is given by the following result. Note that
if the VHS splits into direct summands one can apply Oseledec’s theorem to the
summands individually. The full set of Lyapunov exponents is the union (with mul-
tiplicity) of the Lyapunov exponents of the summands. Note that both sides of the
equations of the following theorem are invariant when passing to finite unramified
covers. We will thus use a convenient model of a fibered surface as explained in
Section 3.1 instead of the Teichmüller curve itself. If one wants to evaluate the right
hand side on the Teichmüller curve, one has to take into account orbifold degrees
of line bundles.

Theorem 6.2 ([Kon97], [KZ97], [BM10b]). If the VHS over the Teichmüller
curve contains a sub-VHS W of rank 2k, then the sum of the corresponding k non-
negative Lyapunov exponents equals

k∑

i=1

λWi =
2degW(1,0)

2g(B)− 2 + |∆|
,

where W(1,0) is the (1, 0)-part of the Hodge-filtration of the vector bundle associated
with W. In particular, we have

g∑

i=1

λi =
2deg f∗ωX/B

2g(B)− 2 + |∆|
.

In particular, the first Lyapunov exponent of a Teichmüller curve is one by our
normalization convention.

The following proof is from [EKZ11]. This proof has three main ingredients.
Instead of averaging over a gt-orbit as stated in the definition of Lyapunov exponents
one averages also over SO2(R)-orbits first and thus over the whole disc. This does
not change the limit appearing in the definition of Lyapunov exponents, since the
set where some other limit occurs has measure zero. Second, instead of taking
the limit for any special vector we can (to determine the top Lyapunov exponent)
average over all vectors or any subset whose intersection with the next filtration
step has measure zero. Third, we rewrite a k-fold wedge-product of flat sections
into a k-fold wedge-product of holomorphic sections plus contributions that are
killed when taking ∂∂ in order to compute a curvature form. This last step works
for the middle wedge power only and this is why this method only determines the
sum of Lyapunov exponents. All the arguments are perfectly valid in the setting of
Section 6.5 and justify Proposition 6.11.

We now give the details of this outline. Let

Ω = ∧k(Q) : ∧2kW → C

be the volume form on W induced by the Hodge inner product with values in the
constant local system C on M , i.e.

Ω(w1 ∧ . . . ∧ wk) =
∑

σ∈S2k

sign(σ)Q(wσ(1), wσ(2)) · · ·Q(wσ(2k−1), wσ(2k)).
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The volume form Ω can be extended OM -linearly to a volume form on the vector
bundle ∧2kW. For any section L = v1 ∧ · · · ∧ vk of Λk(W) given by a decomposable
vector we have a norm induced by the Hodge norm, that can be written in terms
of the Hodge-* as

||L||2 = Ω(v1 ∧ · · · ∧ vk ∧ ∗v1 ∧ · · · ∧ ∗vk).
One checks that for any basis of holomorphic sections ωi of W

(1,0) over some open
subset U of B we have

(9) ||L||2 =
|Ω(ω1 ∧ · · · ∧ ωk ∧ v1 ∧ · · · ∧ vk)| · |Ω(v1 ∧ · · · ∧ vk ∧ ω̄1 ∧ · · · ∧ ω̄k)|

|Ω(ω1 ∧ · · · ∧ ωk ∧ ω̄1 ∧ · · · ∧ ω̄k)|
.

The denominator can also be written as

|Ω(ω1 ∧ · · · ∧ ωk ∧ ω̄1 ∧ · · · ∧ ω̄k)| = det(Q(ωi, ωj)
k
i,j=1).

Lemma 6.3. Given a section L of Λk(W) as above over some open subset U of B,
we have on U the equality of functions

Φk := ∆hyp(log(||L||)) = −1

2
∆hyp log | det(Q(ωi, ωj)

k
i,j=1)|,

where ∆hyp is the Laplacian for the hyperbolic metric along the Teichmüller disc.

Proof. We apply ∆hyp to the defining equation (9), calculate ||L|| and obtain

2Φk = ∆hyp log |Ω(ω1 ∧ · · · ∧ ωk ∧ v1 ∧ · · · ∧ vk)|
+∆hyp log |Ω(v1 ∧ · · · ∧ vk ∧ ω̄1 ∧ · · · ∧ ω̄k)| −∆hyp log | det(Q(ωi, ωj)

k
i,j=1)|.

Since the vi are flat sections, the first summand on the right hand side is a holo-
morphic function and the second summand is an antiholomorphic function of the
parameter on the Teichmüller disc. Hence they are harmonic and vanish after
applying ∆hyp. �

Let Grk(B) be the bundle whose fiber over b consists of the k-dimensional R-
subspaces of (W)b. The Grassmanian carries a Haar measure which we denote by γ.
We pull back this Grassmanian bundle to the unit tangent bundle T1B = SL2(R)/Γ
of B. Within the Grassmanian bundle there is the subset of decomposable vectors
Grdeck (T1B) and this will be the set we are averaging over.

Proof of Theorem 6.2. We first rewrite the sum of Lyapunov exponents as
an integral over Φk in the following way. First, for almost every L in Grdeck (T1B)
we have

k∑

i=1

λi = lim
T→∞

1

T
log ||gT (L)||.

Together with the main theorem of calculus and additional averaging where the
loci that give smaller contributions are of measure zero, we obtain the first line of
(10). In the second line we do yet another circle averaging, in order to write the
inner integral over a disc ∆t of radius t. To pass to the third line we use a result
from harmonic analysis stating that for any smooth rotation invariant function L
we have

1

2π

∂

∂t

∫ 2π

0

L(t, θ)dθ =
1

2
tanh(t)

1

vol(∆t)

∫

∆t

∆hypLdµ.

We are interpreting points c in ∆t as elements in SL2(R) by writing c = gt(rθ(b)).
We may thus let c act on points in H and vector bundles on H using parallel
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transport. We indicate these actions by c∗. Passing to the forth line we perform
a change of variables and use the SL2(R)-invariance of µ. Passing to the fifth line
we use the preceding lemma and get rid of the additional Grassmannian averaging.
The sixth line needs a global bound ([For06]) to justify the change of integration
order. Then we may take the limit of the integral over the tanh first.
(10)

vol(B)

k∑

i=1

λi =

∫

Grdec
k

(T1B)

lim
T→∞

1

T

∫ T

0

d

dt
log ||gt(L, b)||dtdµ(b)dγ(L)

=

∫

Grdec
k

(T1B)

lim
T→∞

1

T

∫ T

0

1

2π

∫ 2π

0

d

dt
log ||gt(rθL, b)||dσ(θ)dtdµ(b)dγ(L)

=

∫

Grdec
k

(T1B)

lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(∆t)

∫

∆t

∆hyp log ||c∗(L, b)||dµ(c)dtdµ(b)dγ(L)

=

∫

T1B

lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(∆t)

∫

∆t

−1

2
∆hyp log | detQ(ωi, ωj)

k
i,j=1|(c∗(b))dµ(c)dtdµ(b)

=

∫

T1B

lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(∆t)

∫

∆t

−1

2
∆hyp log | detQ(ωi, ωj)

k
i,j=1|(b′)dµ(c)dtdµ(b′)

=

∫

T1B

Φk(b
′)

(
lim

T→∞

1

T

∫ T

0

tanh(t)

2 vol(∆t)

∫

∆t

1 dµ(c)

)
dµ(b′)

=

∫

B

Φk(b)dµ(b),

where µ denotes the direct image of µ under the projection T1B → B. Now,
if Θ(det(W(1,0))) denotes the curvature form of the line bundle det(W(1,0)), this
curvature form is represented by the differential form−2∂∂ log | det(Q(ωi, ωj)

k
i,j=1)|.

Since vol(B) = π
2 (2g(B)− 2 + |∆|) we obtain

(11)

∫

B

Φk(b)dµ(b) = −1

4

∫

B

∆hyp log | det(Q(ωi, ωj)
k
i,j=1)|(b) dµ(b)

= −1

4

∫

B

4∂∂ log | det(Q(ωi, ωj)
k
i,j=1)|

i

2
dz ∧ dz

=
i

2

∫

B

[Θ(det(W(1,0)))] = π deg(W(1,0)).

�

In the remainder of this section we give the bridge between the above formula
for the sum of Lyapunov exponents and the slope for Teichmüller curves.

Recall that we denote the signature of a stratum of ΩMg by the tuple µ =
(m1, . . . ,mk) where

∑
mi = 2g − 2. Let κµ be the constant

κµ =
1

12

k∑

i=1

mi(mi + 2)

mi + 1
.

Proposition 6.4. Let C → Mg be a Teichmüller curve generated by a flat surface
in ΩMg(m1, . . . ,mk). Then knowing the slope is equivalent to knowing the sum of
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Lyapunov exponents, since the two quantities are related by the formula

(12) s(C) = 12− 12κµ
L(C)

.

This is yet another consequence of the Noether formula and the self-intersection
number of the sections Si. Versions of the formula appear also in [Che10b, Thm.
1.8] and in [EKZ11].

Proof. As in the proof of Proposition 5.12 we deduce that

(13)
12(C · λ)− (C · δ)

12κµ
=
χ

2

and Theorem 6.2 states that L = 2(C · λ)/χ. Hence the relation (12) follows
immediately. �

The preceding proposition and Xiao’s bound (3.4) gives immediately the fol-
lowing upper bound.

Corollary 6.5. Let C → Mg be a Teichmüller curve generated by a flat surface
in ΩMg(m1, . . . ,mk). Then

L(C) ≤ g

4(g − 1)

k∑

i=1

mi(mi + 2)

mi + 1
.

An explicit formula. For any given Teichmüller curve at a time the sum of Lya-
punov exponents can be calculated, provided the Veech group can be calculated.
This is a non-trivial condition, since at the time of writing there is still no determin-
istic algorithm to determine the Veech groups of the primitive Teichmüller curves
in genus two (see Section 5.5), if the order D is large.

Proposition 6.6. Suppose the Teichmüller curve C = H/SL(X,ω) generated by
(X,ω) has orbifold Euler characteristic χ and let ∆ be the the set of cusps of
C. For each i ∈ ∆ let Cij for j ∈ Ji be the set of maximal cylinders of (X,ω)
in the direction corresponding to the cusp. Suppose that the generator of the cusp
stabilizer in SL(X,ω) acts on Cij as kij-fold Dehn twist. Then the sum of Lyapunov
exponents can be calculated as follows:

(14) L(C) = κµ +
1

6

∑
i∈∆

∑
j∈Ji

kij

χ
.

Note that the fraction is invariant under passing to a finite cover unramified
outside the cusps. Hence working with the orbifold Euler characteristic and the true
Teichmüller curve or the finite cover introduced for technical reasons in Section 3.1
does not change the result.

The kij need not be integral. In fact in the square-tiled surface in Figure 2 the
Veech group is equal to SL2(Z). The generator of the stabilizer of the horizontal
cusp produces a 1/4 Dehn twist on both horizontal cylinders, i.e. its 4-th power
produces a simple Dehn twist on both horizontal cylinders.

Proof. From the Noether formula in the version of (13) and L(C) = 2(C ·λ)/χ
we immediately obtain

L(C) = κµ +
1

6

C · δ
χ

.
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We may suppose that we work over a base curve B as in Section 3.1 and suppose
moreover that all the kij are integral by passing to yet another finite cover (if
necessary) that we still denote by B. In the proof of Proposition 3.3 we checked
that B ·δ =∑F sing. ∆χtop(F ) and that each singularity xy = tn of the stable model
of f : X → B contributes n to this quantity. By Proposition 5.9 the degenerate
fibers X∞ at the point ∞ ∈ ∆ of the Teichmüller curve is obtained by replacing, in
a given direction, the core curves of the cylinders by half-infinite cylinders attached
at their points at infinity to from a node. It thus suffices to check that if a simple
loop around ∞ makes and n-fold Dehn twist around a cylinder, the stable model
locally looks like xy = tn. This is the classical computation of the Picard-Lefschetz
monodromy of surface singularity. �

For any given square-tiled surface (X,ω) calculating the Veech group is no
problem, since there is an explicit algorithm given in [Sch04]. In this case the for-
mula specializes as follows. Let Xi be the square-tiled surfaces in the SL2(Z)-orbit
of (X,ω). For any square-tiled surface Xi we decompose the horizontal direction
into maximal cylinders Cij and denote by mij their moduli. Then

(15) L(C) = κµ +
1

|SL2(Z) · (X,ω)|
∑

Xi∈SL2(Z)·(X,ω)

∑

all Cij

cylinder ofXi

mij .

This formula is derived in [EKZ11] as a consequence of their main theorem
relating the sum of Lyapunov exponents to Siegel-Veech constants (for any SL2(R)-
invariant measure that satisfies a technical regularity condition). We provide here
a proof that is algebraic, but it works for Teichmüller curves only.

Proof of Formula (15). We have 6χ = [SL2(Z) : SL(X,ω)] = |SL2(Z) ·
(X,ω)| for a square-tiled surface (X,ω). To check that the double sums in (14)
and (15) are equal, it suffices to group coset representatives of SL2(Z)/SL(X,ω)

according to the cusps and to observe that

(
1 1
0 1

)
makes an mij-fold Dehn twist

on a cylinder of modulus mij . �

This formula leaves open the need for a conceptual explanation which values
occur for the sum of Lyapunov exponents. This is precisely the motivation for
Section 6.4.

6.4. Non-varying properties for sums of Lyapunov exponents

We have seen that Teichmüller curves, in fact already those that are generated by
square-tiled surfaces, are dense in each stratum. Indeed, on the level of sums of
Lyapunov exponents we have the following convergence statement. Let Cd denote
the union of all Teichmüller curves in a fixed stratum generated by square-tiled
surfaces with d squares. We define the sum of Lyapunov exponents L(Cd) as the
average of the sums of Lyapunov exponents of the individual components weighted
by the orbifold Euler characteristic (or hyperbolic volume) of the corresponding
component.

Proposition 6.7. For d → ∞ the weighted sum of Lyapunov exponents L(Cd) of
square-tiled surfaces in a component of a stratum of ΩMg converges to the sum of
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Lyapunov exponents Lµgen
for the measure µgen with support on the whole compo-

nent.

The proof of this fact is due to Eskin and is published in [Che10b, App. A]. For
the proof the statement is translated into the language of Siegel-Veech constants
(that we will not define here). This translation works only for the sum of Lyapunov
exponents, and thus the corresponding statement for individual exponents is still
an open problem.

Even with such a limiting behavior there is no reason to expect that this sum
should be the same for all Teichmüller curves. A reason to appreciate such a
phenomenon – if it holds – is the wind-tree example given above. It implies the
independence of the escape rate from the side lengths of the scatterers.

We say that a connected component of a stratum is non-varying, if for all Teich-
müller curves C in that component the sum of Lyapunov exponents L(C) is the
same. Such a non-varying phenomenon was observed numerically by Kontsevich
and Zorich along with the initial observations on Lyapunov exponents for the Teich-
müller geodesic flow ([Kon97]). Today, there are two types of non-varying results,
one for low genus and one for hyperelliptic loci and two completely different methods
of proof. One method uses a translation of the problem into algebraic geometry, in
particular slope calculations, and the other relies on the correspondence to Siegel-
Veech constants.

Theorem 6.8 ([CM11]). For all strata in genus g = 3 but the principal stratum
the sum of Lyapunov exponents is non-varying.

For the strata with signature (6)even, (6)odd, (5, 1), (3, 3), (3, 2, 1) and (2, 2, 2)odd

as well as for the hyperelliptic strata in genus g = 4 the sum of Lyapunov exponents
is non-varying. For all the remaining strata, except maybe (4, 2)odd and (4, 2)even,
the sum of Lyapunov exponents is varying.

For the strata with signature (8)even, (8)odd and (5, 3) as well as for the hy-
perelliptic strata in genus g = 5 the sum of Lyapunov exponents is non-varying.
For all the other strata, except maybe (6, 2)odd, the sum of Lyapunov exponents is
varying.

Theorem 6.9 ([EKZ11]). Hyperelliptic strata are non-varying. For a Teichmüller
curve C generated by (X,ω) we have

(16)
L(C) =

g2

2g − 1
and s(C) = 8 +

4

g
if (X,ω) ∈ ΩMg(2g − 2)hyp,

L(C) =
g + 1

2
and s(C) = 8 +

4

g
if (X,ω) ∈ ΩMg(g − 1, g − 1)hyp.

The result of [EKZ11] is a consequence of their main result relating sum of
Lyapunov exponents to Siegel-Veech constants. It also gives non-varying statements
in hyperelliptic loci. The case of genus two curves is a special case of this theorem
and a proof appears in [Bai07] and in [BM10a].

In the left open cases of Theorem 6.8 computer experiments suggest that the
strata should be non-varying, but the method of proof had no success so far, maybe
due to our much limited knowledge of divisors on the moduli space of spin curves
compared to the Mg. In most of the varying cases the method of proof of Theo-
rem 6.8 gives interesting upper bounds for the sum of Lyapunov exponents. This
can be translated e.g. into upper bounds on the escape rate of the ’wind-tree model’
with other patterns of scatterers.
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We now describe the idea of the proof of Theorem 6.8. Suppose that all Teich-
müller curves C in a stratum ΩMg(µ) are disjoint from a divisor D in Mg. Then
C ·D = 0 for all these Teichmüller curves, hence s(C) = s(D). Since the slopes are
non-varying, so are the sums of Lyapunov exponents and the Siegel-Veech constants
for these Teichmüller curves. In general, we also need to consider the moduli spaces
of curves with marked points or spin structures. But the idea still relies on the
non-intersection property of the Teichmüller curves with certain divisors on those
moduli spaces.

We give the proof of the theorem in two instances. The first one is very simple
and shows the general method. The second one is more involved. It shows that in
general we have to work with the moduli space Mg,n rather than Mg, since the
slopes we expect for this stratum in g = 4 are smaller than the slope of any divisor
in M4

In the case ΩM3(4)
odd the algorithm of [EMZ03] to calculate Siegel-Veech

constants for components of strata can be translated using [EKZ11] into L(4)odd =
8/5, hence if non-varying holds we expect by (12) any Teichmüller curve C in that
stratum to have s(C) = 9.

Proof of Theorem 6.8, Case ΩM3(4)
odd. For genus three, the connected

components ΩM3(4)
odd and ΩM3(4)

hyp are not only disjoint in ΩM3 they are also
disjoint in ΩM3 since they are distinguished by the parity of spin structures, which
is known to be deformation invariant over all of Mg for any g.

We need this property only for boundary points of Teichmüller curves, which
is shown in Proposition 5.13. In any case, Teichmüller curves in this stratum do
not intersect the closure of the hyperelliptic locus H in M3. Recall the divisor
class of H in (2). From s(H) = 9 and C ·H = 0, we obtain that s(C) = 9, hence
L(C) = 8/5 for all Teichmüller curves in this stratum using (12). �

In the case ΩM4(3, 3)
non−hyp we can calculate as above L(3,3)non−hyp = 2 hence

if non-varying holds we expect for any Teichmüller curve C in that stratum s(C) =
33/4. Note that s(C) is smaller than the lower bound 17/2 for slopes of effective
divisors in M4 ([HM90]).

Recall from Section 5.4 that we may define, after a finite unramified covering
that does not change Lyapunov exponents, sections σi for i1, . . . , ik of the family
f : X → B over the Teichmüller curve corresponding to the singularities of the
generating holomorphic one-from ω. With the help of (a selection of) these sections
we may lift the Teichmüller curve to a map B → Mg,n for some n ≤ k.

Proof of Theorem 6.8, Case ΩM4(3, 3)
non−hyp. Let C be a Teichmüller

curve generated by a flat surface (X,ω) in the stratum ΩM4(3, 3)
non−hyp, lifted to

B → M4,2. Recall that Lin13 ⊂ M4,2 parametrizes pointed curves (X, p, q) that
admit a g13 with a section vanishing at p, q, r for some r ∈ X. We first want to show
that C (or B) does not intersect Lin13.

Suppose that (X, p, q) is contained in the intersection of B with Lin13. Since
ωX ∼ OX(3p+ 3q) and since being in Lin13 implies h0(OX(p+ q + r)) ≥ 2, by the
Riemann-Roch theorem we know that h0(OX(2p + 2q − r)) ≥ 2. If r 6= p, q, then
h0(OX(2p + 2q)) ≥ 3, hence 2p + q and 2q + p both admit g13 . Since X is not
hyperelliptic the canonical image of X is contained in a quadric in P3. This quadric
has at most two rulings (only one if the quadric is singular) and each g13 corresponds
to a ruling of the quadric. Consequently, both 2p + q and 2q + p define the same
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g13 , the one defined by the line connecting p, q. This implies p ∼ q, a contradiction.
If r = p or q, again, 2p + q and 2q + p both admit g13 and consequently C is
hyperelliptic. But this stratum is non-hyperelliptic, and Proposition 5.13 yields the
desired contradiction.

From C · Lin13 = 0 together with Proposition 5.12 and κ(3,3) = 5/8, the result
follows immediately. �

The last calculation is the calculation for the second test curve in the proof of
Proposition 3.2 read backwards.

6.5. Lyapunov exponents for general curves in Mg and in Ag

The main point of this section is that all the formalism of Lyapunov exponents
is also perfectly valid in this more general setting. For curves in Mg we show
that calculating the sum is equivalent to the (interesting and partially understood)
problem of computing slopes that we addressed in Section 3.4. Moreover, it raises
the interesting question of identifying individual Lyapunov exponents for other
curves besides Teichmüller curves.

Let f : A → C be a non-constant family of abelian varieties. Then the universal
covering of C is the upper half plane and C = H/Γ. We provide the unit tangent
bundle T 1C to C with the metric µ that stems from Haar measure from SL2(R)
and with the geodesic flow gt. In order to apply the calculation used in the proof of
Theorem 6.2 we only need scalar curvature −4 for the correct relation between χ(C)
and vol(C) and we needed gt to have geodesic unit speed, i.e. gt = diag(et, e−t).
We also use these conventions here.

The direct image R1f∗R is a local system V on C (with fiber H1(A,R) of
dimension 2 dimA). We pull this local system back to T 1C and provide it with the
Hodge metric. The key to get started is the following lemma.

Lemma 6.10. The lift of gt to V with respect to µ and the Hodge norm satisfies
the integrability hypothesis in Oseledec’s theorem.

Proof. It suffices to give a global bound (i.e. independent of the abelian va-
riety A) on the operator norm of gt(·) on the (Hodge) norm one-ball in H1(A,R).
To do so, it suffices to bound the derivative of the Hodge norm of any element
in the (Hodge) norm one-ball in H1(A,R) in the direction of some v ∈ T 1Ag. If
p : H → Hg denotes the period map associated with f , this can be rephrased by
bounding ||dp||, where ||dp|| is the norm induced by the Bergmann-Siegel metric
and the Poincaré metric on Hg and H respectively. A generalization of the Schwarz-
Pick Lemma (e.g. [Roy80, Theorem 2]) implies that ||dp|| ≤ k/K where k and K
are the curvatures of the metrics on domain and range of p respectively. With our
normalization we have k = K = −4 and thus ||dp|| ≤ 1. �

Given the lemma, we may talk of the Lyapunov exponents λi of the geodesic
flow on C. From the proof we deduce that

(17) λi ≤ 1

for all i with our curvature normalization, generalizing the expectation from the
case of Teichmüller curves.

As before, we take a subgroup Γ1 ⊂ Γ without elements of finite order such that
the monodromy around the cusps acts unipotently on the fibers. We let B = H/Γ1
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and denote by f : A → B the pullback of the family over C to B. Again, such a
pullback does not change the spectrum of Lyapunov exponents.

The following proposition has been justified along with Theorem 6.2.

Proposition 6.11. Let V be the weight one VHS associated with the family of
abelian varieties f of dimension g. Then the sum of the g non-negative Lyapunov
exponents equals

g∑

i=1

λVi =
2degV(1,0)

2g(B)− 2 + |∆|
,

where V(1,0) is the (1, 0)-part of the Hodge-filtration of the vector bundle associated
with V.

This proposition together with equation (17) implies the Arakelov inequality

(18)
2 degV(1,0)

2g(B)− 2 + |∆|
≤ g.

This inequality appears first in [Fal83]. See also [VZ04] for some background and
references to other versions.

Towards a characterization of Shimura curves. A Shimura curve is a curve
C → Ag that is obtained as the quotient C = K\GR/Γ → U(g)\Sp2g(R)/Sp2g(Z)
induced by some inclusion of Q-algebraic groups G→ Sp2g, where K is a maximal
compact subgroup of GR and where Γ is some arithmetic lattice. Equivalently, a
Shimura curve is a locus of abelian varieties admitting additional ’endomorphisms’.
We put ’endomorphisms’ in quotation marks, since some Shimura curves are defined
by the existence of endomorphisms but in general the presence of Hodge classes is
the appropriate condition. We refer to the recent survey [MO10] for details of the
definition.

This is almost the same as requiring that C → Ag is totally geodesic for the
’Bergmann-Siegel’ Riemannian metric on Ag, the unique (up to scalar) Riemannian
metric on the Hermitian symmetric domain Hg that is invariant under the action
of Sp2g(R). (Note that for g > 1 the Bergmann-Siegel metric is not the Kobayashi
metric on Hg. The latter is just a Finsler metric, not Riemannian for g > 1.) In
fact, such a totally geodesic curve is a Shimura curve if and only if it contains
a CM point. This obstruction is very minor. The only thing that can happen to
produce a totally geodesic curve that is not Shimura is to take a product of a family
of abelian varieties over a Shimura curve times a constant family consisting of a
non-CM abelian variety. See again [MO10] and the references therein for details.

We have the following partial characterization of Shimura curves.

Proposition 6.12. If the curve C → Ag is totally geodesic for the Riemannian
metric on Ag, then the Lyapunov spectrum contains only the values ±1 and zero.

Conversely, if the Lyapunov spectrum of C → Ag contains only the values ±1,
then C is a Shimura curve.

Proof. If C → Ag is totally geodesic, then we may change C into a Shimura
curve without changing the Lyapunov spectrum. Consequently, we may apply
[Möl11, Theorem 1.2]. This theorem states that the VHS decomposes into a uni-
tary part (that gives rise to zero Lyapunov exponents) and the standard Fuchsian
representation of Γ (that gives rise to Lyapunov exponent ±1) tensored with some
unitary representation (that accounts for the multiplicity of ±1).
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Conversely, if the positive Lyapunov exponents are all one, then the VHS over
C attains the upper bound in the Arakelov equality (18). Now the fundamental
result of Viehweg and Zuo ([VZ04, Theorem 0.5]) implies that C is a Shimura
curve (without unitary direct summand in the VHS). �

Open problem. Can one generalize Proposition 6.12 to characterize Shimura
curves as those curves in C → Ag with Lyapunov spectrum only zero and ±1 ? That
is, do the Lyapunov subspaces for zero and those with ±1 span local subsystems?

6.6. Known results and open problems

There are many variants of the comparison problem of Lyapunov exponents for
Teichmüller curves to those of the ambient strata. For the Masur-Veech measure it
was shown by Avila and Viana that the Lyapunov spectrum is simple, thus solv-
ing the Kontsevich-Zorich conjecture ([AV07]). It is tempting to guess that for
square-tiled surfaces with a large number of squares the Lyapunov spectrum of
the corresponding Teichmüller curves (in a fixed connected component of a stra-
tum) converges to the Lyapunov spectrum for the measure µgen supported on the
whole connected component. Besides Proposition 6.7 no such statement is presently
known. Is the Lyapunov spectrum for all but finitely many Teichmüller curves in
a given stratum simple?

The nature of individual Lyapunov exponents is a wide open question. Are
they related to characteristic classes? It seems, on the contrary, that partial sums
of (non-zero) Lyapunov exponents are rational only if the Oseledec’s bundle of this
partial sum is a summand in the decomposition of the VHS. At least, there are
presently no counterexamples.

Lyapunov exponents are hard to determine even numerically. The presently
known and implemented algorithms are based on the first motivation (Zorich, Kont-
sevich), but they are exponentially slow (in desired accuracy) due to the log in the
definition of Lyapunov exponents. It would be interesting to have an alternative
formulation that allows faster computation.

The stratum ΩM3(1, 1, 1, 1) is one of smallest that does not have the non-
varying property. With computer help one easily produces examples of Teichmüller
curves in this stratum with

L(C) ∈ {1, 3/2, 5/3, 7/4, 9/5, 11/6, 19/11, 33/19, 83/46, 544/297}.

The value for the measure with support on the whole stratum is L(1,1,1,1) = 53/28.
What is the set of values that the sum of Lyapunov exponents for Teichmüller
curves attains? At least, what is its set of accumulation points?

A Teichmüller curve has maximally degenerate Lyapunov spectrum, if λ1 = 1
and λ2g = −1 are the only two non-zero Lyapunov exponents. The ’eierlegende
Wollmilchsau’ in Figure 2 is one of the two known Teichmüller curves with max-
imally degenerate Lyapunov spectrum. Its name refers to the fact it has many
different remarkable properties at the same time and serves ubiquitously as coun-
terexamples to many naive conjectural properties of square-tiled surfaces. The
eierlegende Wollmilchsau was discovered by [HS08] and [For06] independently. It
is a cyclic cover

y4 = x(x− 1)(x− t), ω =
dx

y
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and also the other known Teichmüller curve with maximally degenerate Lyapunov
spectrum ([FM08]) is a cyclic cover

y6 = x(x− 1)(x− t), ω =
dx

y
.

In fact, a Teichmüller curve has maximally degenerate Lyapunov spectrum if and
only if it is one of the two families, possibly with exceptions in strata in g = 5
([Möl11]). Does such an exception exist?

References: A good introduction to Lyapunov exponents with a lot of motivat-
ing examples is the survey by Zorich ([Zor06]). With (even) more emphasis on
dynamics an introduction to Lyapunov exponents is given in the lecture notes of
M. Viana ([Via10]).





Bibliography

[AC87] E. Arbarello and M. Cornalba. The Picard groups of the moduli spaces of curves.
Topology, 26(2):153–171, 1987.

[ACGH85] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. Geometry of algebraic

curves. Vol. I, volume 267 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York,
1985.

[AV07] A. Avila and M. Viana. Simplicity of Lyapunov spectra: proof of the Zorich-
Kontsevich conjecture. Acta Math., 198(1):1–56, 2007.

[Bai07] M. Bainbridge. Euler characteristics of Teichmüller curves in genus two. Geom.
Topol., 11:1887–2073, 2007.

[BHPVdV04] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven. Compact complex
surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.
A Series of Modern Surveys in Mathematics [Results in Mathematics and Related

Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag,
Berlin, second edition, 2004.
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[Möl06b] M. Möller. Variations of Hodge structures of a Teichmüller curve. J. Amer. Math.

Soc., 19(2):327–344 (electronic), 2006.
[Möl08] M. Möller. Finiteness results for Teichmüller curves. Ann. Inst. Fourier (Grenoble),

58(1):63–83, 2008.

[Möl09] M. Möller. Affine groups of flat surfaces. In Handbook of Teichmüller theory. Vol.
II, volume 13 of IRMA Lect. Math. Theor. Phys., pages 369–387. Eur. Math. Soc.,
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